Simultaneous Fidelity and Regularization
Learning for Image Restoration
Supplementary Material

In this supplemenrary file, we present the
results of Gaussian denoising, visualization of
learned filters, interpretability and flexibility
of fidelity term, discussion of hyper-parameter
settings as well as more results of SFARL.

1 GAUSSIAN DENOISING

For Gaussian denoising, when the upper-level

objective in Eqn. (11) is visual perception met-
ric, the intermediate denoising result x* still has
noises but is not Gaussian distributed. There-
fore, our SFARL can be used to address this
issue by learning proper fidelity term, and ben-
efits visual perception metric and visual quality
of the denoising result. To this end, we train
three SFARL models for Gaussian denoising
15,25, 50,
respectively. The training dataset consists of
500 images, where 400 are from the BSD dataset
[6] and 100 are randomly selected from the
UCID dataset [7].

We compare the SFARL model with the
state-of-the-art denoising algorithms based on
patches, i.e., BM3D [1], EPLL [5] and WNNM
[2] approaches, fields of experts, i.e., TNRD
[3], and deep CNN, i.e., DnCNN [4]. Table sl

with different noise levels, i.e., 0 =

shows the average SSIM values by different
methods on the BSD68 test images. The SFARL
algorithm achieves the best average SSIM val-
ues at all the noise levels. Note that the SSIM
metric is known to be more consistent with
human visual perception on image, and the
SFARL algorithm performs favorably against
the other methods. Fig. s1 shows the denoising
results with ¢ = 50. As shown in the red
close-ups, the results by the BM3D and WNNM
methods contain visible artifacts, while the re-
sults by the SFARL algorithm is visually more
pleasant. Compared with the TNRD and DnC-
NN, the SFARL model recovers more texture
details, indicating that the fidelity term should
not be the /;-norm when the objective is to
minimize the negative SSIM loss.

2 VISUALIZATION OF FILTERS

We in this supplementary file visualize the
learned filters in both fidelity and regulariza-
tion terms on these three tasks. On one hand, as
shown in Fig. s2, filters in regularization term
are not visually dependent with restoration
task, mainly attributing to that the regular-
ization term is used to model natural image
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Figure s1: Gaussian denoising (o = 50) results by all evaluated methods on a test image.

Table s1: Gaussian denoising on the BSD68 test images in terms of SSIM.

Noise o BM3D [1] EPLL[5] WNNM [2] TNRD [3] DnCNN [4] SFARL
15 0.8604 0.8713 0.8756 0.8773 0.8860 0.8869
25 0.8028 0.8123 0.8135 0.8160 0.8183 0.8197
50 0.6864 0.6948 0.7010 0.7024 0.7104 0.7120
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Figure s2: Visualization of learned filters for 3 restoration tasks. The first row is 48 filters in regularization term,

while the second row presents 49 filters in fidelity term.

priors. On the other hand, filters in fidelity
term are quite different for these three tasks,
and have task-specific patterns correlated with
degradation types. As for deconvolution with
inaccurate blur kernels, mildly blurry filters are
learned to model complex patterns of camera

motion blur kernels. As for rain streak removal,
learned filters have complex and sharp pattern-
s to model rain streaks with different scales
and orientations. Since Gaussian denoising is
a much simple task, learned filters are not as
complex as those in deconvolution and rain
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Figure s3: Visualization of learned filters of SFARL trained on camera shake blur dataset and Disk7 blur dataset.
The first row is 48 filters in regularization term, while the second row presents 49 filters in fidelity term.

streak removal. Also it is interesting to see that
filters in the right bottom corner are nearly the
same with DCT filters, indicating that they are
not changed much during training.

Furthermore, the learned filters in fidelity
term are also associated with diversity of syn-
thetic training dataset. We in Fig. s3 show
the learned filters of two SFARL models for
deconvolution, which are trained on camera
motion blur datasets and Disk7 blur datasets
[15], respectively. In Disk7 blur dataset, only
one disk kernel with radius 7 is used to gen-
erate blurry images (Please see Section 5.2 for
details). Compared with the filters in fidelity
term for camera motion blur, the ones for Disk7
blur have less patterns. For example, the first
filter is very similar to a disk kernel.

3 INTERPRETABILITY AND FLEXIBILITY
OF FIDELITY TERM

Using rain streak removal as an example, we
discuss the interpretability and flexibility of
non-linear functions in fidelity term. In the
tidelity term (9), the filters p; are used to extract
features of rain streaks from residual images,
while the distribution of filter responses can
be characterized with the penalty function D;.
Using the 8-th filter ps as an example, Fig. s4
shows an response image, penalty function Dg
and its derivative (i.e., influence function) (s,
and the distribution of ps®r, on all samples. It
can be seen that the response image is closely
dependent with the rain streaks. Moreover, the
influence function is much more complex and
flexible than the nonlinear activations in CNNs,
e.g.,, ReLU and its variants. Furthermore, the
shape of Ds is similar to that of the distribution
of responses pg ® r;, indicating that that the



learned Dg and g can be used to characterize
the distribution of responses intuitively. Fig.
s5 presents several learned influence functions
¢; (15) and their corresponding D; (9), further
demonstrating their complexity and flexibility.

To sum up, in comparison to conventional
CNNs, the fidelity term (9) can present better
interpretability and flexibility in characterizing
the residual. In terms of interpretability, the
response image of p; is visually dependent
with the rain streaks, and the learned D; and
¢; can intuitively characterize the distribution
of p;®r;. In terms of flexibility, the distribution
of p, ®r, is much more complex, and cannot be
simply characterized by ReLU and its variants.

4 HYPER-PARAMETERS SETTING

The hyper-parameters in our SFARL model
only include filter size s x s and stage number
T, based on which the numbers of filters and
penalty functions in regularization term N, and
in fidelity term /Ny can be accordingly set.

As for filter size s x s, we have s* complete
DCT basis. And thus, we adopt Ny = s filters
in fidelity term. But in regularization term, it
is suggested that only high frequency filters
are useful to model natural image priors [3,12].
Thus, the first DC component in DCT filters is
excluded, and the number of filters in regular-
ization is N, = s> — 1. In our implementation,
SFARL can take advantage of recent advanced
optimization algorithms, e.g., ADAM, and G-
PU parallel acceleration, which allows us to
take large size filters, i.e.,, 7 x 7 filters, in both
fidelity term and regularization term.

As for stage number, we set 1" by stopping
adding new stage when greedy training only
makes a small contribution. And thus we em-
pirically set the stage numbers to 7' = 10 for

deconvolution, T = 5 for rain streak removal,
and T = 5 for Gaussian denoising. Using rain
streak removal as an example, we in Fig. s6
plot average PSNR curve of each epoch during
greedy training and joint fine-tuning. From
Fig. s6, it only makes a very marginal PSNR
improvement by adding 5-th stage, and thus it
is reasonable to set the stage number as 5 for
rain steak removal. To support it, we also train
a 4-stage SFARL model on the training dataset
[16]. Table s2 reports average PSNR and SSIM
on 1,400 rainy images [16], from which one can
see that 4-stage SFARL only performs slightly
inferior to 5-stage SFARL.

Table s 2: Comparison of SFARL models with different
stages for rain streak removal.

Model 4-stage SFARL 5-stage SFARL
PSNR 30.56 31.37
SSIM 0.9103 0.9188

5 MORE RESULTS

We hereby show more results on image decon-
volution with multiple degradations in Fig. s7,
rain streak removal in Fig. s8 and Gaussian
denoising with o = 50 in Fig. s9.
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Figure s4: Illustration of fidelity term in rain streak removal.
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Figure s5: Examples of non-lieanr functions ¢; and D;.
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Figure s6: Convergence curve of SFARL for rain streak removal in greedy training and joint training.
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Figure s7: More results on image deconvolution with multiple degradations by SFARL.
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Figure s8: More results on rain streak removal by SFARL.
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Figure s9: More results on Gaussian denoising by SFARL.



