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Abstract

The total variation (TV) model is one of the most successful methods for im-
age restoration, as well as an ideal bed to develop optimization algorithms for
solving sparse representation problems. Previous studies showed that deriva-
tive space formulation of the image restoration model is useful in improving
the success rate in image recovery and kernel estimation performance in blind
deconvolution. However, little attentions are paid on the model and algorith-
m for derivative space based image restoration. In this paper, we study the
TV based image restoration (TVIR) by developing a novel derivative space
- based reformulation together with an efficient derivative alternating direc-
tion method of multipliers (D-ADMM) algorithm. Thanks to the simplicity
of the proposed derivative space reformulation, D-ADMM only requires four
fast Fourier transform (FFT) operations per iteration, and is much efficien-
t than the other augmented Lagrangian methods. Numerical experiments
show that, D-ADMM can obtain satisfactory restoration result and is much
faster than the state-of-the-art TVIR algorithms.

Keywords: total variation, image restoration, convex optimization,
alternating direction method of multipliers, augmented Lagrangian method

1. Introduction

In many image processing applications, the image in hand is only a de-
graded observation y of the original image x. In the linear degradation
model, the procedure can be modeled as

y = Ax+ e, (1)
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where A is a linear operator and e is the additive Gaussian white noise
(AGWN). Image restoration aims to estimate the clear image x from its
degraded observation y, and is well known as a typical linear inverse problem
[1].

Since the linear operator A usually is ill-conditioned, the recovery of
x from y is an ill-posed problem, and a typical image restoration models
generally includes a fidelity term and a regularization term, resulting in the
following optimization problem,

min
x

1

2
∥Ax− y∥22 + τR(x), (2)

where R(x) is some regularizer on x, and τ is the regularization parameter.
By far, based on various models on image prior, a number of regularizers,
e.g., total variation (TV) [2], gradient-based [3], wavelet-based [4], dictionary-
based sparsity [5, 6, 7], and non-local models [8, 9, 10], have been developed
for image restoration. Due to its simplicity and ability to preserve edges,
the TV regularizer has been widely applied to various image restoration and
recovery tasks, e.g., denoising [11, 12], deconvolution [13, 14, 15], and com-
pressed sensing (CS) [16, 17].

The TV model is also an ideal bed to develop optimization algorithms
for solving sparse representation problems. By far, a number of methods
have been developed for TVIR. These algorithms, including split-Bregman
[18], accelerated proximal gradient [19, 20, 21], and alternating direction
method of multipliers [22, 23, 24], were applied to TVIR, and then were
adopted for other image processing, computer vision, and machine learning
tasks [3, 25, 26, 27, 28, 29].

1.1. Related work

The TVIR model can be formulated as,

min
x

F (x) =
1

2
∥Ax− y∥22 + τ ∥Dx∥ , (3)

where D = [DT
h ,D

T
v ]

T is the discrete gradient operator, ∥·∥ denotes the norm
in the gradient space (including both anisotropic and isotropic versions, and
please refer to Section 2.1 for detailed definitions of TV regularizers), and τ
is the regularization parameter.

The augmented Lagrangian methods (ALM) are one class of the most
efficient among various TVIR algorithms. Because of the non-smoothness of
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the TV regularizer, variable splitting strategies usually are required in the
ALM-based algorithms. By far, there are mainly two variable splitting strate-
gies for ALM-based TVIR. In [23], an auxiliary variable u was introduced
to substitute the variable x in the fidelity term, resulting in the following
equality-constrained optimization problem,

min
x,u

1

2
∥Au− y∥22 + τ ∥Dx∥ s.t. u = x. (4)

By incorporating with the efficient TV-based denoising algorithm [12], A-
fonso et al. developed a split augmented Lagrangian shrinkage algorithm
(SALSA) for TVIR. In [22, 30], another variable splitting strategy was adopt-
ed in FTVd by introducing an auxiliary variable d to substitute Dx in the
regularizer, resulting in the following equivalent formulation,

min
x,d

1

2
∥Ax− y∥22 + τ ∥d∥ s.t. d = Dx, (5)

where d = [dT
h ,d

T
v ]

T with dh = Dhx, dv = Dvx. With this formulation, each
subproblem of the ALM algorithms can be efficiently solved, making FTVd
the state-of-the-art TVIR methods in term of computational efficiency.

Recently, derivative space formulation of the image restoration model had
received considerable research interests and shown several unique advantages
in compressed sensing [31, 32], image restoration [33], and blind deconvolu-
tion [34]. In compressed sensing, Patel et al. [31] proposed a GradientRec
approach which first used the compressed sensing (CS) algorithm to recover
the gradient images and then reconstructed the original image from the gra-
dient images. Because the gradient images are much more sparse, it had been
shown in [31] that derivative space based GradientRec could obtain higher
success rate in image recovery.

In image restoration, Michailovich [33] also introduced a variable d to
substitute Dx in the regularizer. By assuming that the image x has zero
mean value, a left inverse operator U (d) [35] can be employed to recover the
original image from the derivative space, i.e., x = U (d). Thus, the variable
x can be removed from the model in Eq. (3), and TVIR can be formulated
in the derivative space,

min
d

1

2
∥AU{d} − y∥2 + τ ∥d∥ . (6)

Michailovich [33] proposed a TV-based iterative shrinkage (TVIS) algorithm
for solving the model in Eq. (6).
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In blind deconvolution, recent studies showed that, better kernel estima-
tion performance can generally be obtained in the derivative space than in
the image space [34, 36, 37, 38]. Cho and Lee [39] analyzed the condition
numbers of the Hessians which indicated that the Hessian in the derivative
space has a diagonally dominant structure and has a much smaller condition
numbers than that in the image space.

Although previous studies had indicated the advantages of derivative s-
pace formulation, little attentions are paid on the proper modeling and effi-
cient algorithms for derivative space based image restoration. For example,
GradientRec only greedily solved the TV based CS problem and cannot guar-
antee the convergence to the solution of the original problem. The conver-
gence rate of TVIS is O (t−1), which is much slower than the state-of-the-art
TVIR algorithms.

In this paper, we study the derivative space TVIR problem by propos-
ing a novel derivative space - based reformulation together with an efficient
derivative alternating direction method of multipliers (D-ADMM) algorith-
m. This work is an extension of [40], based on which we deduce an explicit
formulation of TVIR in the derivative space and propose two ADMM-based
algorithms to solve it efficiently. First, by analyzing the connections of im-
age space and derivative space, we introduce an explicit equality constraint
on the gradients d, and suggest a novel derivative space based reformula-
tion of TVIR. Compared with the formulation in [33], the proposed formu-
lation is more concise and much easier to be solved. Then, we adopt the
alternating direction method of multipliers (ADMM) algorithm to solve the
constrained optimization problem, resulting in the proposed derivative-space
ADMM (D-ADMM) algorithm. D-ADMM only requires four fast Fourier
transform (FFT) operations per iteration, and is much more efficient than
the other TVIR methods. Finally, experimental results show that, D-ADMM
can obtain satisfactory restoration results and is much faster than the state-
of-the-art TVIR algorithms, e.g., FTVd and SALSA.

1.2. Organization

This paper is organized as follows. Section 2 introduces some background
knowledge related to this paper. Section 3 presents the derivative space
based reformulation of TVIR, and Section 4 describes the proposed D-ADMM
algorithms. Section 5 provides the experimental results by comparing D-
ADMM with the state-of-the-art methods. Finally, Section 5 ends this paper
with some concluding remarks.
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2. Preliminaries

In this section, we first introduce the discrete TV operators with periodic
boundary conditions, then summarize the related proximal operators used in
this paper, and finally, briefly review the ADMM algorithm.

2.1. The discrete TV operators

Analogous to [33], we assume that the image x should lie in the Rm×n

space U with zero mean value, i.e., U = {x ∈ Rm×n|mean (x) = 0}. With
the assumption of periodic boundary conditions, the gradient operator D,
also notated as ∇, is defined as

(Dhx)k,l = xk,l − xk,l−1,with xk,−1 = xk,n−1

(Dvx)k,l = xk,l − xk−1,l,with x−1,l = xm−1,l
, (7)

where k = 0, 1, 2, . . . ,m− 1 and l = 0, 1, 2, . . . , n− 1. Thus, the anisotropic
TV [19, 21] is defined as,

TVa(x) =
m−1∑
k=0

n−1∑
l=0

(∣∣∣(Dhx)k,l

∣∣∣+ ∣∣∣(Dvx)k,l

∣∣∣). (8)

The isotropic TV [19, 21] is defined by

TVi(x) =
m−1∑
k=0

n−1∑
l=0

√
(Dhx)

2
k,l + (Dvx)

2
k,l. (9)

The adjoint operators D∗
h and D∗

v of Dh and Dv can be defined by

(D∗
hx)k,l = xk,l − xk,l+1,with xk,n = xk,0

(D∗
vx)k,l = xk,l − xk+1,l,with xm,l = x0,l

, (10)

respectively.
The images x, dh and dv can be rearranged into the corresponding vec-

tors, and vice versa. Thus, we use the same small bold notation to denote an
image and its vectorization, and this should not cause ambiguity by referring
to the context. Then the gradient operators Dh and Dv can be written as
matrices Dh and Dv with dh = Dhx and dv = Dvx, respectively, The corre-
sponding adjoint operators D∗

h and D∗
v are associated with matrices DT

h and
DT

v , respectively.
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2.2. Related proximal operators

Given a (nonsmooth) convex function g(x) and a vector z, the proximal
operator with parameter λ of g is the function proxλg defined as,

proxλg(z) = argmin
x

1

2
∥x− z∥2 + λg (x) . (11)

Proximal operator is the basic ingredient of the proximal algorithms which
can find many applications in optimization [41]. In the following, we only
introduce several proximal operators used in this paper.

When g is the l1 norm, i.e., g(x) = ∥x∥1, the solution to Eq. (11) is

x = Tλ (z) , (12)

where Tλ(zi) = sgn(zi)max(|zi| − λ, 0) is the soft-thresholding operator [42]
which is applied to elementary entry of z.

When g is the l2,1 norm, i.e., g(x) = ∥x∥2,1 =
∑

i ∥xi∥2 , then i-th column
solution is

xi = Gλ (zi) = Tλ (∥zi∥2)
zi

∥zi∥2
, (13)

where Gλ (z) denotes the group shrinkage operator.

2.3. The left inverse operator

We introduce an operator to estimate image from its gradient vectors.
For any image x in the space U, it is straightforward to show that,

F (div (∇x)) = F
(
−DT

hDh −DT
vDv

)
⊙F (x) , (14)

where F is the Fourier transform, ⊙ denotes the entry-wise product, and div
is the divergence defined as,

div (d) = −
(
DT

hdh +DT
v dv

)
, (15)

We hereby use W to notate the Fourier transform of divergence in Eq. (14),
and by the definition of Fourier transformation of gradient operators, W can
be defined by,

Wk,l =
(
ej2πk/m − 1

) (
1− e−j2πk/m

)
+
(
ej2πl/n − 1

) (
1− e−j2πl/n

)
= 2 cos (2πk/m ) + 2 cos (2πl/n )− 4

, (16)
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where k = 0, 1, 2, . . . ,m− 1 and l = 0, 1, 2, . . . , n− 1. It is easy to point out
that,

x = U (d) = F−1 (F (div (d))⊙Wi), (17)

where
(Wi)k,l = (2 cos (2πk/m) + 2 cos (2πl/n)− 4)−1, (18)

for any k+ l > 0, and Wi(0, 0) corresponds to that the mean value of x is 0.
The left inverse operator x = U (d) actually requires d lying in the sub-

space of curl-free vector fields V [35]. Thus, given an arbitrary vector field
d ∈ (Rm×n)

2
, we need to first project it onto V[35, 33].

2.4. ADMM

Consider a general optimization problem,

min
u,v

f(u) + g(v) s.t. Gu+Hv = c, (19)

where u ∈ Rn, v ∈ Rm, G ∈ Rd×n, H ∈ Rd×m and c ∈ Rd.
In the augmented Lagrangian method (ALM), the augmented Lagrangian

(AL) function of the problem in Eq. (19) is defined as,

L (u,v,λ, δ) = f(u) + g(v) + λT (Gu+Hv − c) +
δ

2
∥Gu+ v − c∥2 , (20)

where λ ∈ Rd is a vector of Lagrangian multiplier and δ > 0 is the AL
penalty parameter. For more concise expression, with minor algebra, the AL
function can be rewritten as

L (u,v,p, δ) = f(u) + g(v) +
δ

2
∥Gu+Hv − c+ p∥2 , (21)

where p = λ/δ.
For most problems, it is extremely difficult to solve u and v simultane-

ously. A natural strategy is to alternatively update u and v, resulting in the
alternating direction method of multipliers (ADMM) algorithm summarized
in Algorithm 1. In conventional ADMM [23, 24, 43], the penalty parameter δ
is fixed. In order to accelerate the convergence speed, Lin et al. [44] proposed
an adaptive updating strategy for penalty parameter,

δ(t+1) = min
(
δmax, ρδ

(t)
)
, (22)
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Algorithm 1: ADMM

1. Initilize u(0), v(0), p(0), t = 0
2. while not converged

3. u(t+1) = argmin
u

{
f(u) + δ(t)

2

∥∥∥Gu+Hv(t) − c+ p(t)
∥∥∥2
2

}
4. v(t+1) = argmin

v

{
g(v) + δ(t)

2

∥∥Gu(t+1) +Hv − c+ p(t)
∥∥2
2

}
5. p(t+1) = p(t) +

(
Gu(t+1) +Hv(t+1) − c

)
6. Update δ(t) to δ(t+1)

7. t = t+ 1
8. end while

with

ρ =

{
ρ0, if δ

∥∥∥Hv(t+1) −Hv(t)
∥∥∥/∥∥Gu(t+1)

∥∥ < ε

1, otherwise
. (23)

where δmax is the upper bound of δ and ρ0 is a positive scalar.
The convergence of ADMM has been presented in [45], where the Theorem

1 is proved.

Theorem 1. If (19) satisfies the two assumptions,
(1) The functions f : Rn → R∪{+∞}and g : Rm → R∪{+∞}are closed,

proper and convex,
(2) The unaugmented Lagrangian function of (19) has a saddle point,

the ADMM iterates converge to the optimal solution of (19).

3. Problem Formulation

In this section, we first present a novel derivative-based reformulation
of TVIR by analyzing the connections of image space and derivative space,
and then validate the rationale of the deduction of the proposed derivative
space-based reformulation via numerical experiments.

3.1. Derivative space-based reformulation of TVIR

Let’s denote that a random variable u ∈ RN×1 has a Gaussian distribution
with the mean µ and the covariance Σ i.e., u ∼ N (µ,Σ). Given a matrix
L ∈ RM×N , the random variable would have a Gaussian distribution with
the mean Lµ and the covariance LΣLT , i.e., Lu ∼ N (Lµ,LΣLT ) [46].
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Based on the degradation model defined in Eq. (1), one can easily see
that the additive noise e = Ax − y has a Gaussian distribution, i.e., e ∼
N (0, σ2I). Thus, with the derivative operator D, the random variable De
has the Gaussian distribution De ∼ N (0, σ2DDT ). Based on the definition
of covariance matrix, we can obtain the following,

E(∥e∥22) = mnσ2, (24)

E
(
∥De∥22

)
= σ2tr(DDT ) = 4mnσ2, (25)

where tr (·) denotes the trace of a matrix. Note that e is an m × n image
and each pixel of e is independent identically distributed (i.i.d.). When the
image size is sufficiently high, it is natural to have

mnσ2 = E(∥e∥22) =
∑

k,l
E
(
∥ek,l∥22

)
≈ ∥e∥22 , (26)

4mnσ2 = E(∥De∥22) =
∑

k,l
E

(∥∥∥(De)k,l

∥∥∥2

2

)
≈ ∥De∥22 . (27)

Because of the inter-change property of convolution operators, ∥D(Ax− y)∥22
can be rewritten as ∥ADx−Dy∥22 . From Eqns. (26) and (27), we have

∥D(Ax− y)∥22 = ∥ADx−Dy∥22 ≈ 4 ∥Ax− y∥22 . (28)

By replacing Dx with d and restricting d ∈ V, TVIR can be reformulated
in the derivative space,

d̂ = argmin
d

F (d) = 1
2
∥Ad−Dy∥22 + µ ∥d∥

s.t. d ∈ V
, (29)

where we set µ = 4τ based on Eq. (29).
Based on the definition of curl [47], the constraint d ∈ V can be explicitly

expressed as DT
hdv = DT

v dh. Thus, we use the notation DT
c =

[
DT

v ,−DT
h

]
and rewrite the equality constraint in more concise expression, i.e., DT

c d = 0.
The proposed derivative space-based reformulation of TVIR can then be
written as,

d̂ = argmin
d

1
2
∥Ad−Dy∥22 + µ ∥d∥

s.t. DT
c d = 0

. (30)

Compared with the formulation in [33], the proposed reformulation is much
simpler and easier to be solved.
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3.2. Numerical validation

The noise e = Ax − y can be regarded as a set of mn i.i.d. sam-
ples. Since the image size is high, it is reasonable to assume the approx-
imation ∥ADx−Dy∥2 ≈ 4 ∥Ax− y∥2 would hold. To verify rationality
of the assumption and the influence of image size, we use a set of natu-
ral images with different sizes, convolve them with different blur kernels,
and further add different degrees of additive Gaussian white noise on the
blurred images. For each noisy and blurred image, we calculate the ratio
γ = ∥ADx−Dy∥2

/
∥Ax− y∥2 and then evaluate the distribution of γ with

respect to the image size.

Table 1: Statistical parameters of the γ values

Image size mean/max/min std.

128 × 128 4.000/4.093/3.930 0.0221
256 × 256 3.999/4.036/3.960 0.0110
256 × 512 4.000/4.025/3.982 0.0056
1024 × 1024 4.000/4.009/3.991 0.0028

In our experiments, the distributions of γ are evaluated with respect to
four image sizes, i.e., 128 × 128, 256 × 256, 512 × 512, 1024 × 1024. For
each image size, we adopt 20 natural images, six blur kernels (including four
Gaussian blur kernels with = 3, 5, 7 and three camera motion kernels used in
[38]), and ten degrees of Gaussian noise with the standard deviation ranged
from 0.001 to 0.1. Thus, for each image size, we can obtain 20 × 6 × 10 =
1200 γ values.

Table 1 lists the mean, maximum, and minimum values, and the standard
deviation of the γ values with respect to each image size. In Fig. 1, we present
the histograms of the γ values for each image size, where red lines stand for
the range of [µ − σ, µ + σ]. From Table 1 and Fig. 1, it is reasonable to
assume γ ≈ 4. Moreover, with the increasing of image size, the deviation of
the γ values to 4 would decrease. Thus, the problem formulation in Eq. (30)
is really a good approximation of the original TVIR model, especially when
the image size is sufficiently large.

4. The D-ADMM Algorithms

In this section, we propose two D-ADMM algorithms for solving the TVIR
model in Eq. (30). First, we solve the problem in Eq. (30) using the
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Figure 1: The histograms of the values with respect to different image sizes: (a) 128×128, (b) 

Figure 1: The histograms of the γ values with respect to different image sizes: (a)
128×128, (b) 256×256, (c) 512×512, and (d) 1024×1024.

conventional ADMM algorithm, i.e., D-ADMM(C). Second, by combining
both Lagrangian method and augmented Lagrangian method, we propose a
hybrid ADMM algorithm, i.e., D-ADMM(H). which can further improve the
efficiency of TVIR. Finally, we discuss some implementation issues of the
proposed algorithms.

4.1. Conventional D-ADMM

By introducing an auxiliary variable f with f = d, the problem in Eq.
(30) can be equivalently formulated as,

d = argmin
d,f

1
2
∥Ad−Dy∥2 + µ ∥f∥

s.t. DT
c d = 0, d = f

. (31)

The augmented Lagrangian function of Eq. (31) is defined as,

L = µ ∥f∥+ 1
2
∥Ad−Dy∥22 +

δ2
2
∥d− f + q∥2

+ δ1
2

∥∥DT
hdv −DT

v dh + p
∥∥2 . (32)
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Like d, either of q, and f includes two parts, i.e., q = [qT
h ,q

T
v ]

T , and f =
[fTh , f

T
v ]

T .
Given f , p, q, and dv, the dh subproblem can be formulated as,

min
dh

1
2
∥Adh −Dhy∥2 + δ2

2
∥dh − fh + qh∥2

+ δ1
2

∥∥DT
hdv −DT

v dh + p
∥∥2

, (33)

and the close-form solution of dh is defined as,

dh = F−1
(
F
(
ATDhy + δ1Dv

(
DT

hdv + p
)

+δ2 (fh − qh))∅F(Bh))
, (34)

where Bh = ATA+ δ1DvD
T
v + δ2I and ∅ stands for the entry-wise division.

Similarly, given f , p, q, and dh, the close-form solution to dv can be
obtained by

dv = F−1
(
F
(
ATDvy + δ1Dh

(
DT

v dh − p
)

+δ2 (fv − qv))∅F(Bv))
, (35)

where Bv = ATA+ δ1DhD
T
h + δ2I.

Given p, q, and d, the solutions to f can be obtained by solving the
following subproblem,

f = argmin
f

1

2
∥f − q− d∥22 + µ/δ2 ∥f∥ , (36)

For anisotropic TV, we have ∥f∥ = ∥f∥1, and we can use the soft-thresholding
operator [42] introduced in Section 2.2 to update f ,

f = Tµ/δ2 (q+ d) . (37)

For isotropic TV, we can simply let (f)k,l = [(fh)k,l(fv)k,l]
T . Then f can be

updated by using the group shrinkage operator introduced in Section 2.2,

(f)k,l = Gµ/δ2

((
(qh)k,l
(qv)k,l

)
+

(
(dh)k,l
(dv)k,l

))
. (38)

Based on the ADMM algorithm, p and q can be updated as follows

p(t+1) = p(t) +DT
hd

(t+1)
v −DT

v d
(t+1)
h

q(t+1) = q(t) + d(t+1) − f (t+1) . (39)
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For the updating of δ1 and δ2, we have

δ
(t+1)
1 = min

(
δmax, ρ1δ

(t)
1

)
δ
(t+1)
2 = min

(
δmax, ρ2δ

(t)
2

) , (40)

where δmax is upper bound of δ1 and δ2, and the values of ρ1 and ρ2 are
defined according to Eq. (23), by substituting the corresponding variables of
constraint.

Finally, Algorithm 2 summarizes the main steps of D-ADMM(C). One
can see that only 4 FFT operations are required per iteration.

Algorithm 2: D-ADMM(C)

1. Preprocessing ȳ = mean(y)

2. Initilize p(0), q(0), d(0), f (0), t = 0
3. Precompute F (Bh) = F

(
ATA+ δ1DvD

T
v + δ2I

)
F (Bv) = F

(
ATA+ δ1DhD

T
h + δ2I

)
4. while not converged

5.
d
(t+1)
h = F−1

(
F
(
ATDhy + δ1Dv

(
DT

hd
(t)
v + p(t)

)
+δ2

(
f
(t)
h − q

(t)
h

))
∅F (Bh)

)
6.

d
(t+1)
v = F−1

(
F
(
ATDvy + δ1Dh

(
DT

v d
(t)
h − p(t)

)
+δ2

(
f
(t)
v − q

(t)
v

))
∅F (Bv)

)
7. f (t+1) = argmin

f

1
2

∥∥f − q(t) − d(t+1)
∥∥2
2
+ µ/δ2 ∥f∥

8. p(t+1) = p(t) +DT
hd

(t+1)
v −DT

v d
(t+1)
h

9. q(t+1) = q(t) + d(t+1) − f (t+1)

10. Update δ
(t+1)
1 and δ

(t+1)
2

11. t = t+ 1
12. end while

13. x = U
(
d(t)

)
14. x = x+ ȳ

4.2. Hybrid D-ADMM algorithm

The TVIR model in Eq. (31) involves two equality constraints: f = d
and DT

c d = 0. Hereby the augmented Lagrangian method is adopted to deal
with the equality constraint f = d, and the conventional Lagrangian dual
method is used to address the equality constraint DT

c d = 0, resulting in a
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hybrid ADMM algorithm. In hybrid D-ADMM, we only consider the penalty
on f = d, and define a partial augmented Lagrangian function as,

Lp = µ ∥f∥+ 1
2
∥Ad−Dy∥2 + δ

2
∥d− f + q∥2

s.t. DT
c d = 0

. (41)

Then the ADMM algorithm is adopted to update f , d, and q. Given d and
q, the f subproblem can be reformulated as,

f = argmin
f

1

2
∥f − q− d∥22 + µ/δ ∥f∥ . (42)

As discussed in Section 4.1, this subproblem can be easily solved by using
the soft-thresholding or the group shrinkage operator.

Given f and q, the d subproblem can be reformulated as,

d = argmin
d

1
2
∥Ad−Dy∥2 + δ

2
∥d− f + q∥2

s.t. DT
c d = 0

. (43)

To update d, we first define the Lagrangian dual function of the d subproblem
as,

Ld =
1

2
∥Ad−Dy∥2 + δ

2
∥d− f + q∥2 + λTDT

c d. (44)

Thus, the KKT conditions can be written as,{
∂Ld

∂d
= AT (Ad−Dy) + δ (d− f + q) +Dcλ = 0

∂Ld

∂λ
= DT

c d = 0
, (45)

which yield the solutions,{
λ =

(
DT

c B
−1Dc

)−1
DT

c B
−1

(
ATDy + δ (f − q)

)
d = B−1

(
ATDy + δ (f − q)−Dcλ

) , (46)

where B = ATA+ δI. Fortunately, with the help of 2D discrete Fourier
transform, all the matrix inverse operations in Eq. (46) can be efficiently
computed in the Fourier domain. Let F(λ) be the Fourier transform of λ,
and F(Dh), F(Dv), F(DT

h ) and F(DT
v ) be the Fourier transform of Dh, Dv,

DT
h and DT

v , respectively. Similarly, we have F(a) = F
(
ATDy

)
, F(B) =

F
(
ATA

)
, F(D2

c) = F
(
DT

hDh +DT
vDv

)
. First, the solution to λ can be

obtained in the Fourier domain,

F(λ) =
(
F(DT

v )⊙ (F(ah) + δF(fh − qh))
−F(DT

h )⊙ (F(av) + δF(fv − qv))
)
∅F(D2

c)
. (47)
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Then, the solutions to dh and dv can also be obtained in the Fourier domain,{
dh = F−1 ((F (ah) + δF(fh − qh)) −F(Dv)⊙F(λ))∅F(B))
dv = F−1 ((F(av) + δF(fv − qv)) +F(Dh)⊙F(λ))∅F(B))

. (48)

Given d and f , we update q using the standard strategy adopted in
ADMM,

q(t+1) = q(t) + d(t+1) − f (t+1). (49)

For the updating of δ, we adopt

δ(t+1) = min
(
δmax, ρδ

(t)
)
, (50)

where δmax is upper bound of δ, and the values of ρ is defined according to
Eq. (23), by substituting the corresponding variables of constraint.

Algorithm 3: D-ADMM(H)

1. Preprocessing ȳ = mean(y)

2. Initilize p(0), d(0), f (0), t = 0
3. Precompute F (B) = F

(
ATA+ δI

)
, F (a) = F

(
ATDy

)
F
(
D2

c

)
= F

(
DT

hDh +DT
v Dv

)
4. while not converged

5. F (sh) = F
(
f
(t)
h − q

(t)
h

)
, F (sv) = F

(
f
(t)
v − q

(t)
v

)
6.

F(λ) =
(
F(DT

v )⊙ (F(ah) + δF(sh))
−F(DT

h )⊙ (F(av) + δF(sv))
)
∅F(D2

c)

7. d
(t+1)
h = F−1 ((F (ah) + δF (sh)−F (Dv)⊙F (λ))∅F (B))

8. d
(t+1)
v = F−1 ((F (av) + δF (sv)−F (Dh)⊙F (λ))∅F (B))

9. f (t+1) = argmin
f

1
2

∥∥f − q(t) − d(t+1)
∥∥2
2
+ µ

/
δ2 ∥f∥

10. q(t+1) = q(t) + d(t+1) − f (t+1)

11. Update δ(t+1)

12. t = t+ 1
13. end while

14. x = U
(
d(t)

)
15. x = x+ ȳ

Finally, we summarize D-ADMM(H) in Algorithm 3.

4.3. Convergence and complexity

We first prove the convergence of the D-ADMM algorithms.
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Proposition 1. For the reformulated derivative problem (31), the iterates
{d(t)} generated by the D-ADMM algorithms converge to the optimal solution
d∗.

Proof : To prove the convergence of D-ADMM, we simply need to demon-
strate that it satisfies the conditions of Theorem 1.

The constraints of (31) can be rearranged as [I,Dc]
Td + [−I,0]T f = 0,

and then Problem (31) has the form (19), with f (d) = 1
2
∥Ad−Dy∥22 ,

g (f) = µ ∥f∥ , G = [I,Dc]
T , H = [−I,0]T and c = 0. First, the functions f

and g simply are quadratic function and TV function, respectively, which are
obviously proper, closed and convex. Then, D-ADMM(C) and D-ADMM(H)
share the same unaugmented Lagrangian function, i.e.,

L =
1

2
∥Ad−Dy∥22 + µ ∥f∥+ λT (Gd+Hf) . (51)

For there only exists linear equality constraints in (31), its strong duality
holds, leading to that the unaugmented Lagrangian function (51) has a saddle
point [48].

Thus, D-ADMM(C) and D-ADMM(H) can both converge to the optimal
solution d∗. �

For the computational complexity, since F(Dh), F , (Dv) F(DT
h ), F(DT

v ),
F(a), F(B), and F(D2

c) can be pre-computed in advance, D-ADMM(H) on-
ly requires four FFT operations per iteration. D-ADMM(C) also only re-
quires four FFT operations per iteration. Compared with D-ADMM(C),
D-ADMM(H) does not need to introduce the variable p, and uses the La-
grangian dual method to obtain the closed form solution to d. Thus, D-
ADMM(H) would be better than D-ADMM(C) in terms of convergence speed
and efficiency.

4.4. Implementation issues

For D-ADMM(C) and D-ADMM(H), we adopt the following stopping cri-
teria by checking whether the difference of variables between the subsequent
iterations is below a sufficient small positive value ε,

max
(∥∥d(t+1) − d(t)

∥∥/∥∥d(t)
∥∥, ∥∥f (t+1) − f (t)

∥∥/∥∥f (t)∥∥) ≤ ε. (52)

The iterative algorithm would stop once the difference is below a prede-
fined threshold ε. The same initialization strategy is employed in both D-
ADMM(C) and D-ADMM(H). d(0) and f (0) are simply initialized to be Dy,
and both p(0) and q(0) are initialized to be zero.
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The D-ADMM(C) and D-ADMM(H) algorithms involve several parame-

ters, i.e., δ
(0)
1 , δ

(0)
2 , δmax for D-ADMM(C), and δ(0), δmax for D-ADMM(H).

Although the algorithms converge to the optimal solution for any and , the
values of these parameters do affect the convergence rate of algorithm. We
empirically give the following recommendation: for D-ADMM(C) we have

δ
(0)
1 = δ

(0)
2 = 10−4, δmax = 100, while for D-ADMM(H) we have δ(0) = 10−4,

δmax = 100.

5. Experimental Results

In this section, we report the experimental results of the proposed al-
gorithms for image restoration. In our experiments, we first compare the
proposed D-ADMM algorithms with another derivative space based TVIR
algorithm, TVIS [33]. To further verify the efficiency and effectiveness of
the proposed methods, we further compare the restoration performance and
running time of ADMM with those of the state-of-the-art ALM-based algo-
rithms, i.e., SALSA [23] and FTVd [22].

The programs in our experiments are all coded in MATLAB and ran on
a 2.40GHz Core(TM)i7-4700MQ laptop. We independently implement the
codes of TVIS according to Michailovich’s work [33]. The source codes of
SALSA 1 and FTVd 2 are downloaded from the websites 3. In our experi-
ments, we only report the results of D-ADMM and the competing algorithms
for solving the isotropic TVIR problem.

5.1. Comparison with TVIS

In [33], Michailovich first presented a TVIS algorithm for solving the
anisotropic TVIR problem, and then found a connection between TVa and
TVi via multidirectional gradient, where TVi can be approximated by TVL

with the following property,

TVL =

{
TVa, L = 1
TVi, L → ∞ . (53)

1http://cascais.lx.it.pt/~mafonso/SALSA_v2.0.zip
2http://www.caam.rice.edu/~optimization/L1/ftvd/v4.1/FTVd_v4.1.zip
3We will also make our source code available online after the paper is accepted.
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(b) (d) (f) (h)

Figure 2: Restoration of a synthesis image. (a) original image, (b) the degraded image, (c), (e) and (

are the restoration results of TVIS-3, D-ADMM(C) and D-ADMM(H), respectively, (d), (f) and (h) are Figure 2: Restoration of a synthesis image. (a) the original image, (b) the degraded im-
age, (c), (e) and (g) are the restoration results of TVIS-3, D-ADMM(C) and D-ADMM(H),
respectively, (d), (f) and (h) are restoration details of (c), (e) and (g), respectively.

As suggested in [33], TVi can be well approximated by L = 3. In our
experiments, we set L = 3 for isotropic TVIR, and notate the TVIS method
as TVIS-3.

We first use a 256 × 256 synthesis image shown in Fig. 2(a) to evaluate
D-ADMM(C), D-ADMM(H) and TVIS-3 for isotropic TVIR. The synthesis
image is blurred by the 7× 7 Gaussian kernel with the mean of zero and the
standard deviation of 3, and then Gaussian white noise with the standard
deviation of 5× 10−3 is added to the blurred image to generate the degraded
image. In the experiments, we set the regularization parameters µ = 4×10−4

for D-ADMM(C) and D-ADMM(H) and τ = µ/4 for TVIS-3. Fig. 2 shows
the restoration results of D-ADMM(C), D-ADMM(H) and TVIS-3. From
Fig. 2, one can see that D-ADMM(C) and D-ADMM(H) are more effective
for the small details like edges and lines.

For comprehensive evaluation, we further use ten 256 × 256 images to
evaluate D-ADMM(C), D-ADMM(H) and TVIS-3. The ten images are shown
in Fig. 3, and we use the same procedure for the synthesis image to generate
the degraded images. Table 2 4 and Table 3 list the PSNR and SSIM values
of D-ADMM(C), D-ADMM(H), and TVIS-3 on these ten images. One can
see that, D-ADMM(C) and D-ADMM(H) can achieve comparable or better

4In the following tables, the highest PSNR, SSIM or the fastest running time for each
case is highlighted.
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Figure 3: The ten images used in our experiments, hereafter we numbered them as 1 to
10 from left to right and top to down.

restoration quality than TVIS-3 in terms of both PSNR and SSIM [49] values.
Since the D-ADMM algorithms inherit the second order convergence rate of
ADMM, D-ADMM(C) and D-ADMM(H) are both much faster than TVIS
5, shown in Table 4.

5.2. Comparison with the state-of-the-art ALM algorithms

In this section, we compare D-ADMM with two state-of-the-art ALM-
based algorithms, i.e., SALSA and FTVd. To the best of our knowledge,
FTVd is the fastest algorithm for TVIR. The ten images shown in Fig. 3
are adopted to test the TVIR algorithms. We conducted the deblurring
experiments on different kernels and noise levels. We used two camera shake
kernels, k1 and k2, used in [38], and the standard deviation (std.) of Gaussian
white noise was set ranged from 10−3 to 10−2, which has been widely adopted
in image deblurring literatures [14, 22, 24, 30, 32]. The degraded image is
generated by convolving with two camera shake kernels, and we then add
Gaussian white noise with zero mean value and different std., i.e., 1× 10−3,
5 × 10−3 and 1 × 10−2. Corresponding to the noise levels, the trade-off
parameter µ is set as 3 × 10−5, 4 × 10−4 and 2 × 10−3, respectively, and
τ = µ/4.

5In [33], Michailovich presents several ways to improve convergence rate of TVIS, which,
however, are not adopted in our implementation. Even cooperated with accelerating ap-
proaches, TVIS is believed to be much less efficient than D-ADMM, for its first order
convergence rate.
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Table 2: PSNR comparison of TVIS and D-ADMM for isotropic TVIR

Method TVIS-3 D-ADMM(C) D-ADMM(H)

1 29.76 29.78 29.80

2 24.88 24.86 24.85

3 25.41 25.61 25.58

4 27.20 27.26 27.30

5 28.13 28.26 28.19

6 27.49 28.03 27.99

7 31.31 32.56 32.51

8 28.54 28.64 28.65

9 26.96 27.80 27.82

10 29.53 29.90 29.95

Avg 27.92 28.27 28.26

Fig. 4 shows the restoration results of Image 7 obtained using D-ADMM(C),
D-ADMM(H), SALSA, and FTVd. One can easily see that D-ADMM(C)
and D-ADMM(H) can obtain similar or better restoration results while com-
pared with SALSA and FTVd. We also investigate the influence of iteration
number on PSNR and SSIM, in which the image is blurred by kernel 1 and
zero-mean Gaussian white noise with std. 5 × 10−3. We hereby stop all the
algorithms at 100 iteration, and the PSNR, SSIM and objective function, i.e.,
F (x) or F (d), versus iterations are shown in Fig. 5. One can see that, all the
four algorithms converge to the almost same objective function loss 6, and
the two D-ADMM algorithms can converge to better results than SALSA
and FTVd in terms of PSNR and SSIM. Also, D-ADMM(H) converges much
faster than D-ADMM(C) and SALSA.

We further compare D-ADMM with the competing algorithms based on
three performance indicators, PSNR, SSIM, and running time. From Table 5
and Table 6, one can see that the D-ADMM algorithms generally are superior
or comparable with the competing methods in terms of restoration quality,
especially in terms of SSIM values, for all noise levels. When the noise level
is low, the D-ADMM algorithms perform better. When the noise level is
high, the D-ADMM algorithms are lower than SALSA and FTVd in terms
of PSNR, but are superior in terms of SSIM.

6Please note that F (d) is about 4 times of F (x).
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Table 3: SSIM comparison of TVIS and D-ADMM for isotropic TVIR

Method TVIS-3 D-ADMM(C) D-ADMM(H)

1 0.809 0.814 0.815

2 0.650 0.649 0.648

3 0.701 0.717 0.715

4 0.826 0.844 0.843

5 0.812 0.817 0.816

6 0.815 0.820 0.818

7 0.850 0.868 0.865

8 0.808 0.812 0.811

9 0.788 0.884 0.886

10 0.865 0.880 0.879

Avg 0.792 0.811 0.810

Note that SALSA, FTVd and the D-ADMM algorithms are developed to
solve the same convex optimization problem and all can converge to the global
optimal solution. Thus, efficiency is a more critical indicator for evaluating
different algorithms. From Table 7, D-ADMM(C) is much faster than SALSA
and is slower than FTVd. D-ADMM(H) can be faster than both SALSA and
FTVd. D-ADMM(H) is at least 2 times faster than FTVd, and is at least 40
times faster than SALSA.

6. Conclusion

In this paper, we studied the derivative space based reformulation of the
TVIR problem, and proposed two derivative augmented Lagrangian meth-
ods, i.e., D-ADMM(C) and D-ADMM(H). Unlike previous TVIR formula-
tion, the proposed derivative space based reformulation provides a reason-
able approximation of TVIR, and introduces an explicit equality constraint
on the gradients d, which makes the proposed reformulation more concise and
much easier to be solved. Thanks to the simplicity of the derivative space
based TVIR formulation, D-ADMM(C) and D-ADMM(H) only require four
FFT operations per iteration, and thus are efficient for TVIR. Experimen-
tal results show that, compared with the state-of-the-art TVIR algorithms,
D-ADMM(H) can obtain satisfactory restoration result and is much faster.
Besides, the proposed algorithms can also be extended for solving other im-
age restoration applications, e.g., image inpainting, compressed sensing, and
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Table 4: Running time comparison of TVIS and D-ADMM for isotropic TVIR

Method
TVIS-3 D-ADMM(C) D-ADMM(H)
(104 sec.) (sec.) (sec.)

1 5.272 4.656 0.208

2 5.298 5.341 0.183

3 5.281 4.447 0.115

4 5.306 4.151 0.224

5 5.305 4.274 0.241

6 5.256 4.274 0.221

7 5.260 5.705 0.353

8 5.342 5.681 0.274

9 5.371 4.391 0.159

10 5.340 3.765 0.114

Avg 5.301 4.669 0.209

even blind deconvolution.
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Table 5: PSNR comparison of different algorithms. In each cell, 4 values at Top-Left,
Top-Right, Bottom-Left and Bottom-Right represent PSNR obtained by SALSA, FTVd,
D-ADMM(C), D-ADMM(H), respectively.

noise 1× 10−3 5× 10−3 1× 10−2

kernel k1 k2 k1 k2 k1 k2

1
35.90 35.88 35.15 35.19 30.93 30.41 30.82 31.14 29.80 29.81 30.29 30.36
35.53 35.74 36.64 36.44 31.36 31.54 32.09 32.35 28.74 28.77 30.58 30.66

2
31.28 30.87 32.57 32.22 28.33 28.05 29.01 29.07 26.41 26.35 27.59 27.50
29.58 30.74 30.49 31.07 27.45 27.49 28.26 28.39 25.38 25.38 26.60 26.62

3
30.33 30.94 31.65 31.28 28.39 28.41 29.17 29.26 26.98 26.88 27.71 27.66
30.54 31.90 31.28 32.27 28.14 28.12 28.87 28.95 25.59 25.60 27.00 27.03

4
33.03 33.8233.46 33.21 30.03 30.22 30.53 30.85 29.02 29.11 29.5 29.63
31.88 32.73 32.01 33.06 29.87 29.87 30.12 30.01 28.13 28.14 28.85 28.87

5
34.40 34.16 34.95 34.03 30.90 30.05 30.38 30.65 29.1829.18 29.56 29.61
34.58 34.83 35.22 35.32 30.72 30.96 31.25 31.51 28.26 28.32 29.53 29.59

6
33.89 33.80 34.14 34.08 30.06 30.24 30.54 30.84 29.42 29.46 29.83 29.92
33.96 34.66 35.08 35.19 30.76 31.03 31.29 31.53 28.58 28.60 29.82 29.88

7
36.60 36.4 36.83 36.43 31.13 31.38 26.10 31.89 31.00 31.13 31.37 31.58
37.54 37.31 38.75 38.15 32.78 33.00 33.31 33.60 30.77 30.83 32.66 32.78

8
33.77 33.75 33.12 34.10 30.03 30.21 25.14 30.97 29.58 29.60 29.94 30.03
33.73 34.2 34.55 34.67 30.66 30.91 31.19 31.41 28.78 28.85 29.91 29.97

9
32.14 32.8832.53 32.25 30.20 30.43 30.81 31.20 29.60 29.69 30.20 30.35
30.62 31.49 31.61 31.76 29.07 29.16 29.65 29.86 26.99 27.02 28.72 28.74

10
35.19 35.14 32.53 32.29 30.51 30.69 30.93 31.22 30.06 29.88 30.41 30.27
33.70 35.17 33.44 35.73 31.38 31.2 31.77 31.35 28.94 28.94 30.32 30.38

Avg.
33.65 33.76 33.69 33.43 30.05 30.01 29.34 30.71 29.1129.11 29.64 29.69
33.17 33.88 33.91 34.37 30.22 30.33 30.78 30.90 28.02 28.04 29.40 29.45
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Table 6: SSIM comparison of different algorithms. In each cell, 4 values at Top-Left,
Top-Right, Bottom-Left and Bottom-Right represent SSIM obtained by SALSA, FTVd,
D-ADMM(C), D-ADMM(H), respectively.

noise 1× 10−3 5× 10−3 1× 10−2

kernel k1 k2 k1 k2 k1 k2

1
0.936 0.942 0.952 0.953 0.849 0.830 0.838 0.850 0.808 0.812 0.827 0.832
0.944 0.948 0.954 0.959 0.8570.8610.8740.880 0.790 0.792 0.842 0.845

2
0.954 0.951 0.966 0.971 0.8300.8340.8610.866 0.765 0.7660.8170.817
0.918 0.919 0.926 0.920 0.813 0.815 0.844 0.848 0.702 0.702 0.771 0.772

3
0.932 0.917 0.972 0.975 0.8600.8620.881 0.884 0.811 0.810 0.8370.837
0.941 0.924 0.947 0.938 0.853 0.855 0.8740.877 0.755 0.755 0.804 0.806

4
0.893 0.926 0.918 0.925 0.761 0.775 0.769 0.791 0.774 0.786 0.776 0.792
0.925 0.934 0.940 0.946 0.8320.8350.8320.836 0.831 0.832 0.847 0.849

5
0.940 0.955 0.954 0.955 0.837 0.844 0.846 0.857 0.830 0.833 0.833 0.838
0.952 0.959 0.960 0.966 0.8760.8820.8840.889 0.828 0.831 0.853 0.855

6
0.930 0.950 0.945 0.951 0.820 0.829 0.831 0.844 0.819 0.825 0.825 0.833
0.946 0.951 0.956 0.963 0.8620.8680.8750.879 0.824 0.825 0.855 0.858

7
0.810 0.922 0.866 0.939 0.750 0.764 0.764 0.776 0.767 0.779 0.766 0.781
0.931 0.950 0.946 0.962 0.8310.8360.8340.840 0.835 0.837 0.850 0.854

8
0.933 0.951 0.949 0.943 0.825 0.833 0.864 0.851 0.824 0.827 0.828 0.835
0.940 0.946 0.949 0.957 0.8630.8690.8720.877 0.830 0.833 0.851 0.853

9
0.929 0.931 0.946 0.943 0.857 0.848 0.856 0.862 0.853 0.862 0.852 0.862
0.939 0.942 0.950 0.961 0.8770.8800.8820.887 0.870 0.871 0.891 0.892

10
0.914 0.938 0.935 0.933 0.802 0.815 0.806 0.824 0.819 0.828 0.815 0.827
0.939 0.9450.952 0.95 0.8660.8680.8650.867 0.862 0.863 0.876 0.879

Avg.
0.917 0.938 0.940 0.948 0.819 0.823 0.780 0.841 0.807 0.813 0.817 0.825
0.937 0.941 0.948 0.952 0.8530.8570.8640.868 0.813 0.814 0.844 0.846
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Table 7: Running time (sec.) comparison of different algorithms. In each cell, 4 values at
Top-Left, Top-Right, Bottom-Left and Bottom-Right represent running time of SALSA,
FTVd, D-ADMM(C), D-ADMM(H), respectively.

noise 1× 10−3 5× 10−3 1× 10−2

kernel k1 k2 k1 k2 k1 k2

1
21.47 0.473 25.52 0.494 24.64 0.803 27.74 0.832 24.09 1.252 25.15 1.072
1.307 0.151 2.459 0.178 2.296 0.279 2.715 0.180 4.354 0.788 4.544 0.602

2
24.49 0.699 26.26 0.632 25.49 1.032 24.28 1.004 23.69 1.168 23.06 1.025
3.450 0.197 3.522 0.249 3.309 0.243 3.481 0.228 4.109 0.595 4.071 0.531

3
24.93 0.724 23.86 0.677 24.64 1.004 24.22 0.888 22.69 1.212 22.28 1.057
3.326 0.239 3.625 0.242 3.330 0.240 3.667 0.226 3.821 0.562 4.389 0.521

4
23.27 0.763 23.04 0.720 23.32 1.045 22.77 0.924 20.25 1.411 26.09 1.258
3.739 0.237 3.879 0.215 3.724 0.308 3.994 0.227 4.312 0.597 4.445 0.522

5
22.95 0.744 21.35 0.630 21.14 1.020 20.28 0.913 24.15 1.420 21.56 0.999
3.510 0.239 3.773 0.210 3.142 0.320 3.377 0.217 3.798 0.557 4.309 0.551

6
27.72 0.795 22.78 0.701 27.83 1.031 29.40 2.107 23.10 1.155 22.79 0.969
3.548 0.217 4.028 0.367 3.407 0.446 4.602 0.235 3.544 0.543 4.059 0.567

7
16.43 0.709 13.59 0.657 21.65 0.941 19.36 0.839 25.49 1.103 26.78 1.713
2.879 0.222 3.714 0.196 4.406 0.500 3.582 0.290 4.269 0.641 6.348 0.717

8
13.96 0.735 14.05 0.673 23.91 0.996 18.65 0.892 26.93 1.172 21.87 1.002
3.284 0.196 4.079 0.209 3.341 0.289 4.039 0.228 6.132 0.566 4.651 0.528

9
24.45 0.720 20.94 0.669 20.62 0.995 18.89 2.247 24.29 0.618 24.75 0.540
3.660 0.190 5.476 0.222 3.942 0.290 5.434 0.224 1.877 0.245 2.151 0.243

10
25.24 0.729 21.61 0.681 23.85 1.138 23.20 2.153 24.58 0.585 24.07 0.494
3.981 0.449 4.032 0.220 3.804 0.324 3.901 0.245 1.579 0.253 1.975 0.236

Avg.
24.49 0.709 21.30 0.653 23.71 1.001 22.88 1.280 23.93 1.110 23.84 1.013
3.268 0.234 3.859 0.231 3.470 0.324 3.879 0.230 3.779 0.535 4.094 0.502
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