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Partial Deconvolution With Inaccurate Blur Kernel

Dongwei Ren, Wangmeng Zuo ™', David Zhang, Jun Xu

Abstract—Most non-blind deconvolution methods are devel-
oped under the error-free kernel assumption, and are not
robust to inaccurate blur kernel. Unfortunately, despite the
great progress in blind deconvolution, estimation error remains
inevitable during blur kernel estimation. Consequently, severe
artifacts such as ringing effects and distortions are likely to be
introduced in the non-blind deconvolution stage. In this paper,
we tackle this issue by suggesting: 1) a partial map in the Fourier
domain for modeling kernel estimation error, and 2) a par-
tial deconvolution model for robust deblurring with inaccurate
blur kernel. The partial map is constructed by detecting the
reliable Fourier entries of estimated blur kernel. And partial
deconvolution is applied to wavelet-based and learning-based
models to suppress the adverse effect of kernel estimation error.
Furthermore, an E-M algorithm is developed for estimating the
partial map and recovering the latent sharp image alternatively.
Experimental results show that our partial deconvolution model
is effective in relieving artifacts caused by inaccurate blur kernel,
and can achieve favorable deblurring quality on synthetic and
real blurry images.

Index Terms—Image deblurring, blind deconvolution, blur
kernel estimation, E-M algorithm.

I. INTRODUCTION

MAGE deblurring that aims to recover clean image from

its blurry observation is a fundamental problem in image
processing and low level vision. By assuming the blur is
spatially uniform, the blurry image y can be formulated as
the convolution of blur kernel k with a sharp image x,

y=k®x+n, (1)

where ® denotes 2D convolution operation, and n is additive
white Gaussian noise (AWGN). Moreover, with the uniform
blur assumption, image deblurring can be formulated into a
deconvolution problem [1].
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Blind deconvolution is a more challenging deblurring
problem, in which both the blur kernel and the sharp image
are unknown. A typical blind deconvolution method generally
involves two stages: (i) blur kernel estimation from the blurry
observation and (ii) non-blind deconvolution based on the
estimated blur kernel. By far, various methods, including
Variational Bayes (VB) [2], Maximum a Posterior (MAP) [1]
and their extensions [3]-[13], have been proposed for blur
kernel estimation. With the estimated blur kernel, the existing
non-blind deconvolution approaches, e.g., total variation [14],
hyper-Laplacian [15], EPLL [16], NCSR [17], and CNN-based
methods [18], [19], can then be employed to recover the latent
sharp image.

Despite the great progress in blur kernel estimation, the ker-
nel error remains inevitable to be introduced. However, typical
non-blind deconvolution methods are developed under the
error-free kernel assumption [16], [20], [21], and are not
robust to inaccurate blur kernel. Consequently, artifacts such
as ringing effects and distortions are likely to be produced in
the non-blind deconvolution stage.

Several methods have been proposed to design specific
image priors to suppress the adverse effect caused by kernel
estimation error. Given the estimated blur kernel Kk, the sharp
image x can be recovered in the MAP framework,

x = argmax log Pr (x]y, k)
X

= arg max log Pr (y|k, x) + log Pr (x) . 2)
X

With error-free kernel assumption, the conditional probability
distribution Pr (y|k, x) is commonly specified as Gaussian
based on the noise n. As for the regularization term log Pr (x),
extensive works [14]-[17], [22] have been proposed for mod-
eling natural image priors. Instead of natural image priors,
the structure consistency between the blurry and recovered
sharp images is enforced in [23] and [24] for relieving ringing
artifacts. In [25], bilateral regularization is iteratively imposed
on the intermediate image to restore sharp edges. In [26],
cross-channel priors were designed to reduce ringing effect.
However, the specifically designed image priors may fail in
addressing complex artifacts. Denote by k8’ the groundtruth
blur kernel. Even small blur kernel estimation error Ak =
k8" — k can produce severe artifacts such as ringing and
distortions [24]. Thus, besides specific image priors, we should
also take into account the characteristics of kernel estimation
error for better suppressing the artifacts. To the best of our
knowledge, there is only one attempt [27] to model kernel
estimation error with an implicit strategy. Ji and Wang [27]
introduce an auxiliary variable r = Ak ® x and then impose
sparsity regularization on it. Although this method is effective
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Fig. 1.

An example of Fourier spectrum. The FS of groundtruth blur kernel is much different with that of estimated blur kernel, but is more similar with

the reference FS by spectral method [28]. Moreover, the estimation error in phase is closely related with that in FS. Thus, we suggest to model blur kernel
estimation error in Fourier domain by employing the reference FS to localize the reliable Fourier entries. (a) Blurry image. (b) Reference FS. (¢) Groundtruth
kernel and its FS. (d) Estimated kernel and its FS. (e) Weighted phase of groundtruth kernel. (f) Weighted phase of estimated kernel.
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Fig. 2.

in suppressing the artifacts, it also tends to over-smooth the
texture details in the recovered images.

A. Motivation and Contributions

In this work, we aim to explicitly model kernel estimation
error Ak. Due to the groundtruth blur kernel is unknown,
Ak is dependent with both the blurry image and kernel
estimation algorithm, making it difficult to model Ak in
spatial domain. Instead, we suggest to model Ak in Fourier
domain. Fig. 2(c)(d) shows the Fourier spectrum (FS) of the
groundtruth and estimated [29] blur kernels. And Fig. 2(e)(f)
shows the magnitude-weighted phase information of the
groundtruth and estimated [29] blur kernels. It is interesting to
see that, the estimation error in phase is closely related with
that in FS. Given one entry, when the FS of the estimated
kernel is dissimilar to that of the groundtruth, it is very
likely that the corresponding spectrum-weighted phase of the
estimated kernel is also dissimilar to that of the groundtruth.
Thus, one may model kernel estimation error in Fourier
domain, but groundtruth FS is still required for reference.
Fortunately, as shown in Fig. 2(b), the FS of blur kernel can
be robustly estimated by several spectral methods [28], [30],
and serves as a reasonable reference FS to localize the reliable
Fourier entries for modeling kernel estimation error.

Motivated by this observation, we in this paper propose
a partial deconvolution model to explicitly model kernel
estimation error in Fourier domain. Given the reference FS,

Illustration of partial deconvolution under the E-M framework, where the E-step estimates the partial map and the M-step updates clean image.

by comparing it with the FS of estimated blur kernel, a binary
partial map € can be constituted to indicate the reliability of
Fourier entries of blur kernel. During deconvolution, only the
reliable components (£2; = 1) within the partial map are used,
whereas excluding the unreliable ones (£2; = 0), suppressing
the adverse effect of kernel estimation error. Specifically, when
the blur kernel is accurate, i.e., each entry in €2 is 1, the partial
deconvolution model is exactly equivalent to the conventional
deconvolution model in Fourier domain.

As for the joint estimation of the partial map and latent
clean image, we develop an E-M framework, where the E-step
is adopted to find the expectation of the partial map, and
the M step performs partial deconvolution given partial map
to recover clean image. The overall framework is illustrated
as Fig. 2, which iteratively performs the following two steps:
(1) In the E-step, given the current estimate of clean image Xo,
the reference FS can be estimated from the blurry image y.
The partial map €2 is then updated by comparing with the FS
of inaccurate blur kernel. (ii) In the M-step, given the partial
map €, clean image x can be updated by solving the partial
deconvolution. Specifically, by incorporating with wavelet-
based [31] and learning-based [32] deconvolution models, two
robust partial deconvolution methods are developed in this
paper to recover clean image.

Moreover, we provide a variant of partial deconvolution
model, in which zero points in FS of blur kernel are included
into 2. In [33], the authors suggest that zero points in FS
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take charge of ringing effects, and propose a post-processing
technique to detect and remove ringing effect with accordance
to each zero point. Thus, the computational complexity in [33]
is proportional to the number of zero points. But in our work,
the partial deconvolution model and its variant share the same
computational cost, and the de-ringing capability is naturally
integrated into the deconvolution stage.

We summarize our contributions as follows:

o« A novel partial deconvolution model is proposed for
robust deblurring to inaccurate blur kernel by explicitly
modeling kernel estimation error in Fourier domain.

o By incorporating partial deconvolution model with
wavelet-based and learning-based methods, two robust
deconvolution methods are developed for inaccurate blur
kernel.

« Instead of post-processing, de-ringing with zero points in
FS can be naturally integrated into the partial deconvolu-
tion model without the sacrifice of computational cost.

Experiments on synthetic datasets and real blurry images

validate the effectiveness of the partial deconvolution model.
The proposed methods achieve better quantitative metrics and
visual quality than the state-of-the-art methods on the synthetic
datasets. The results on real blurry images further indicate
that the proposed methods can relieve not only ringing effects
but also other artifacts like color distortions, leading to more
visually plausible restoration quality.

B. Organization and Notations

The remainder of this paper is organized as follows.
Section III proposes the partial deconvolution model along
with the E-M framework for jointly estimating the partial
map and clean image. Section IV applies the partial decon-
volution into wavelet-based and learning-based methods for
robust deblurring. Section V reports the experimental results,
and Section VI concludes this paper.

In this paper, we use a bold lowercase, e.g., X, to repre-
sent a 2D image and its vectorization. For a blur kernel or
filter, e.g., k, its uppercase K represent the corresponding
sparse transform matrix. For the Fourier transform, F is the
2D Fourier transform, and F is the corresponding Fourier
transform matrix. So for an image x, its Fourier transform
can be equivalently performed as X = F(x) or X = Fx, where
the former x is a 2D image, while the latter one is vectorized.

II. RELATED WORK

In this section, we first review deconvolution methods based
on natural image priors with error-free kernel assumption, and
then present specifically designed priors and models for robust
deconvolution with inaccurate blur kernel.

A. Deconvolution Based on Natural Image Prior

According to Eqn. (2), the non-blind deconvolution model
can be equivalently reformulated as,

A
X:arglnxinznk@X—yH +R(x), 3)
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where R (x) = —log Pr (x) is the regularization term associ-
ated with image prior, and 4 is a positive trade-off parameter.
With error-free kernel estimation, the fidelity term is usually
specified as £2-norm corresponding to the AWGN n. As for
the regularization term, the key issue is to better describe
priors of natural images. First, gradient-based models, such
as total variation [34] and hyper Laplacian [15], are studied
to model the distribution of image gradients, and have been
widely applied due to its simplicity and efficiency. Then,
patch-based [16] and non-local similarity [35], [36] models
are developed to characterize more complex and internal
dependence among image patches. Besides, by employing
sparsity in wavelet domain [31], wavelet frame-based models
are designed in both analysis and synthesis forms. Recently,
under the discriminative learning framework, regression tree
fields (RTF) [37] and cascaded shrinkage field (CSF) [22]
are proposed to learn natural image priors with high com-
putational efficiency. Besides, Bar er al. [38] propose to use
{1-norm in fidelity term, which is derived from Laplacian noise
distribution. Cho ef al. [39] develop a non-linear deconvolution
model to handle saturated pixels and non-Gaussian noise.

When taking kernel estimation error into account, one
common strategy is to decrease the trade-off parameter to
over-strengthen the regularization term. This strategy, however,
suppress the artifacts caused by inaccurate blur kernel at the
cost of over-smooth restoration results. In contrast, the pro-
posed partial deconvolution model modifies the fidelity term
by taking kernel estimation error into account, and thus can
better preserve textures while reducing artifacts. Moreover,
besides the wavelet-based and learning-based deconvolution
methods, partial deconvolution is flexible to incorporate with
other deconvolution methods including gradient-based and
patch-based ones.

B. Robust Deconvolution

Given the inaccurate blur kernel, several other works try
to design specific priors rather than the natural image priors
for reducing ringing artifacts. In [23] and [24], local smooth-
ness constraint is adopted to force structure consistency of
deblurred and blurry images. Yuan et al. [25] propose to
iteratively impose bilateral regularization for recovering sharp
edges. In [26], cross-channel priors are designed to reduce
ringing effect. Besides, Mosleh er al. [33] propose a post-
processing technique for ringing artifact removal, in which a
set of Gabor filters with one-to-one correspondence to detected
zero points in FS are constructed, and then their responses
are imposed as the regularization on the restored image to
reduce the ringing artifacts. Although the ringing effect can be
relieved by these methods, other artifacts like color distortions
caused by kernel estimation error still remain.

Currently, there is only one method to implicitly model
kernel estimation error [27]. Rather than model the kernel error
Ak = k8" —Kk, Ji and Wang [27] introduce an auxiliary variable
as the image residual r = Ak®x and impose £1-norm sparsity
regularization on r,

A
min_ Ik @ x + 1 —yIP + R () + zlrlls, “)
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which is solved by alternatively updating x and r. To suppress
the ringing artifact, they further explicitly separate sharp
edges and periodic patterns with different sparsity-based pri-
ors. However, the image residual r intend to absorb more
texture details from clean image X, resulting in over-smoothed
deblurring results.

Instead of imposing regularization on the residual image r,
the proposed partial deconvolution method explicitly mod-
els kernel estimation error in Fourier domain. Compared
with [27], our model is more effective in suppressing the
adverse effect of kernel estimation error while preserving more
texture details.

III. OUR PARTIAL DECONVOLUTION MODEL

In this section, we first formulate the partial deconvolution
model in the Fourier domain, in which partial map is intro-
duced to localize reliable Fourier coefficients of estimated blur
kernel. Then, we develop an E-M framework to jointly update
partial map and clean image. Finally, we provide an approach
to estimate the reference FS.

A. Partial Deconvolution

Let us first assume that partial map €2 is available to indicate
reliable Fourier components £; = 1 and the unreliable ones
©?; = 0. Starting from the idea that unreliable Fourier coeffi-
cients should be excluded during deconvolution, we propose
a new partial convolution model in the Fourier domain,

Fa(y) = Fo (k®x) + Fo ), 5)

where Fgq is partial 2D Fourier transform under €2, same as
in the partial Fourier imaging [40], [41].

Also by the Bayes’ theorem, the clean image x can be
estimated as

x = argmax log Pr (x]y, k, 2)
X

(6)

where Y = F (y). With the additive white Gaussian noise in
the Fourier domain, the partial deconvolution model can be
written as

arg max log Pr (YK, x, ) + log Pr (x),
X

A
X:argrr;inzllfg k®x)—Fo (Y)||2+R(X)- @)

One can see that if the blur kernel is accurate, each entry of
the partial map 2 would be 1, and the partial deconvolution is
exactly equivalent to the conventional deconvolution model
in Eqn. (3). Otherwise, only the reliable Fourier entries,
i.e.,, £ =1, will be used during deconvolution, and the
missing Fourier coefficients, i.e., &; = 0 are expected to be
recovered [40], [41], resulting in the robust deblurring model.

B. E-M Framework for Partial Deconvolution

In the partial deconvolution model, the key issue is to deter-
mine the partial map 2. We hereby develop an E-M frame-
work [39], [42] for estimating the partial map and clean image
alternatively. Currently, we assume that the reference FS is
available at hand.
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Therefore, let us again revisit the Bayes’ estimation of clean
image x, and introduce a latent binary variable €,

x = argmax Pr (Y]k, x) Pr (x)
X
arg max Zﬁ/ Pr (v, @'k, x) Pr (x)

arg max Zﬂ/ Pr (y12',k, x) Pr (2'[k, x) Pr (x),

)

where all the possible configurations of £ should be collected,
making the marginalization of Pr(y, '|k,x) intractable.
So instead of marginalizing likelihood Pr (¥, 2’|k, x) with
respect to €', the proposed E-M algorithm tries to evaluate
the expectation of Pr (¥, ®'|k, x), which is then used to find
the optimal x. Generally speaking, in the E-step, given the
current estimation of clean image x¢, the expectation Q (X, Xg)
of the log likelihood Pr (’)7, 'k, X) under Pr (SZ’B?, Kk, x) can
be estimated, where the posterior distribution Pr (£'[y, k, x)
should be first estimated by using xo to approximate x. Then
in the subsequent M-step, the clean image x can be updated
by minimizing the log posterior Q (X, Xo) + logPr (x). In the
following, we give the details of the E-M framework.

1) E-Step: Given the current estimation of clean image X,
the expectation Q (X, Xo) of the log likelihood Pr (¥, 2’|k, X)
w.r.t. latent variable ' can be written as

0 (x,x0) = E [logPr (7, 'k, x)]

= E [logPr (¥, k, x) +logPr (2'k,x)],  (9)

where E is the expectation under Pr('ly,k,Xo). First,
we need to specify the definitions of Pr(y/€’,k,x) and
Pr (Sl’lk, x).

By assuming the noise is with independent identical
Gaussian distribution, we have Pr (37| Q' K, x) =[I,Pr (37, |,
K, x), and define

Pr (3:|9', k, x) (10)

_ |G @Gite), ifQ =1,
], else,

where T = F (k ® x), C is a constant by assuming that the
Fourier coefficients corresponding to kernel error are with

uniform distribution, and G (x; u, o) is the Gaussian function

defined as
L. ( (x — ﬂ)z)
x - T A 7 b
J2mo P 202

where x4 and ¢ are mean and standard deviation.

As for Pr(®'|k,x), we also assume it is independent
identically distributed. Gil@& the current clean image x, we can
obtain the reference FS |k(x)|, and the estimation method will
be presented in Section III-D.

In this work, instead of continuous probability definition
of Pr (SZ’|k, X), we simply adopt the truncated definition

G(x;p,0) = (11)

Pr (@) =1|k,x) = Pr (sz; = 1| k|, If(x\)l)

_ [p, if o (IKl;, [k®)1;) = 7,
0,

(12)
else,

where p is the probability of the blur kernel accuracy,
7 is a positive threshold, and ¢ (a,b) = exp (—(a - b)z).
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Although the reference FS is more accurate than that of
estimated blur kernel, it still has some estimation errors
compared with the groundtruth one. By adopting the truncated
probability definition, reference FS estimation error can be
tolerated by the threshold 7 and accuracy probability p.

So by taking Eqns. (10) and (12) into Eqn. (9), we can
rewrite the expectation as

Q (x,%0) & D E[Rfly. k. xollog G (§i: Ti. o)

E(Qly,k xo| . ~
D %m ~%/, (13)
where
E[Qly, k,xo] =Pr (2 = 1]y, k,Xo) . (14)
With the Bayes’ theorem
Pr (y:|9), k Pr (Q/|k
Pr(Sl;ry\,-,k,xO): r(yll i° 5X0) r( l| 9XO) (15)

Pr (y: |k, x0) '

where
1
Pr (yilk.x0) = Y Pr(¥i|®}. k. xo) Pr (2} [k, xo). ~ (16)
Q=0

Again, by taking Eqns. (10) and (12) into account, we have
E [y, k, xo] R
G (yi;fi,o) p
=1G @ i:fi.o)p+CU—p)
0,

it o (KL, IKGo);) = 7,

else.
(17)

To sum up, the E-step estimates the expectation of €', which
in the following is used as the partial map, i.e., R; =
E[R]y, k, x0].

2) M-Step: Once the partial map € is determined, the clean
image X can be updated by

x = argmax Q (X, Xg) + log Pr (x)
X

. 2; 2
= argmin 3 5 [Fk@x); — FO)| +R K. (18)
By denoting ﬁ as 4, we reformulate the problem (18) as

X = argmxin%HSlFKx — QFy|? + R (x), (19)
where x € RV denotes the vectorization of an image,
K € RV*N is the blur matrix and F € CV*V is the Fourier
transform matrix. As to partial map 2, we also need to
rearrange it as a N x N diagonal matrix, whose diagonal values
are the estimated expectation in Eqn. (17). The partial decon-
volution model (19) can be incorporated with a variety of non-
blind deconvolution model by specifying the regularization
term R(x), which will be elaborated in details in Section IV.
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Algorithm 1 Partial Deconvolution Under E-M Framework

Input: blurry image y, estimated blur kernel k
Output: clean image x
1: Initialize Q) =1, xg =y
2: Input (y,k, 2 xq) to Algorithm 2 or Eqn. (34), and
return x(
: for t =1 to Tgpr do
Xo = x({t=1) /\
Update the reference FS |k(xo)| using Eqn. (27)
E step: Estimate partial map Q(*) using Eqn. (17) or
Eqn. (21)
7: M step: Input (y,k, Q") %) to Algorithm 2 or Eqn.
(34), and return x(*)
8: end for
9: x =x

AN AN

C. Adding Zero Points Into Partial Map

As in [33], zero points in FS of blur kernel intend to
cause ringing effect, and a post-processing technique is further
developed to relieve ringing effect. Therefore, we provide a
variant of partial deconvolution model, in which zero points of
FS are included in the partial map for the purpose of removing
ringing effects. Following [33], we use morphological operator
to detect zero points in FS, resulting in the coordinate set
O = {i| |k|; is a zero point}. And thus the probability defini-
tion of Pr (2'|k, x) can be revised as

Pr (2] = 1]k, x)
= Pr (2] = 1] [Kl, [k(x)))

:{p, if o (K k®)) =7 & €0, 0

0, else.

and the expectation of partial map can be accordingly derived
as

E [ly, k, xo]
G@Fitio)p . e .
_ | oriseni—s. it o (Kl ko)) = 7&i ¢ O,
0, else.

21

In [33], once the zero points are detected, a set of Gabor
filters, each corresponding to one zero point, are constructed,
and are imposed as regularization to reduce the ringing effect.
Since the computational complexity is proportional to the
number of zero points, only several ones with low frequencies
are used. However, in the proposed partial deconvolution
model, rather than a post-processing technique in [33], zero
points can be directly included in the partial map, and thus
the de-ringing effect can be achieved during deconvolution.
Besides, the complexity of our partial deconvolution is inde-
pendent with the number of zero points. Thus all the detected
zero points can be included into the partial map without
increasing computational load.

In Algorithm 1, under the E-M alternations, the overall
partial deconvolution algorithm is summarized for jointly
estimating the partial map and clean image.
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D. Estimating the Reference Fourier Spectrum

As for the reference FS |k/(x\)| in E-step, its best choice
is definitely the ground truth one |k8’|. But as with the
groundtruth blur kernel, its FS is also not available in practice.
So we in this section propose an approach to estimate the
reference FS from the blurry image.

On one hand, for a clean image x of natural scene, it is
suggested that its Fourier spectrum follows the power law [28],

(@)% o lo] 72, (22)

where @ = (w1, ) # (0,0) is the Fourier frequency
coordinate. On the other hand, as for a second-order deriv-
ative filter, e.g., d = [—1, -2, —1;-2,12,-2; —1, -2, —1]
used in this paper, its Fourier spectrum has the following
approximation,

ld(@)* ~ clloll?, (23)

where c is a constant. Therefore, for a blurry image y degraded
by Eqn.(1), it is easy to derive that
d®Y@)° = k@)’ [d@) %) + 20
~ clk@) )] +20°

= c|k(®)|* + 202, (24)

where o is standard deviation of Gaussian noise. Thus in this
ideal case, we can obtain the reference FS by

(25)
c

However, the power law in Eqn. (22) only holds for texture-
only images, and is usually destroyed by salient structure in
natural images. In [28], a weighted power law is proposed to
restrain the structures for better FS estimation.

In this work, we propose a new approach to estimate FS
from blurry image. As for an clean image x, we separate it
into structure S and texture T, i.e., x = S + T, where the tex-
ture T holds the power law Eqn. (22). Thus, for frequency o,
we also have the approximation ¢ ~ |&(w)|2|'i‘(w)|2, based on
which Eqn. (24) can be refined as

d® y(w)
~ k@) (14@)P18@) + [d@) P IT@)1?) +20

~ k(@) (@8 @)1 +c) + 202, (26)
Therefore, the reference FS can be estimated by
— F @) F(@d)F (y) F (y) — 20?2
m@”:J WF@FWFH 20> 0
FAF@FOS)FS) +c

The reference FS is iteratively updated during E-M
alterations. By providing the clean image x as the current
estimation x( in M-step, we employ relative total variation [43]
to separate it into structure and texture. As for the constant c,
we calculate it as the average power over all the frequencies
of texture T,

c==> FdF@F (T)F D, (28)

N
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where N is the number of pixels in texture image T. Along
with the E-M alternations, better update of clean image x will
lead to better estimation of the reference FS, and vice versa.

The FS of blur kernel is much easier to estimate than
blur kernel itself, and in [28], [30] the phases can be fur-
ther recovered to reconstruct blur kernel, which has also
achieved comparable performance compared with MAP-based
and VB-based state-of-the-art blind deconvolution meth-
ods [3], [10], [12], [44], [45]. In this work, we only use the
estimated FS as the reference to indicate the reliability of
estimated blur kernel, which is more well conditioned than
blur kernel estimation.

E. Discussion

The proposed partial deconvolution model is formulated
in the Fourier domain, and when each entry in partial map
is 1, it is exactly equivalent to the conventional deconvo-
Iution model. The expectation of partial map 2 actually
serves as a metric matrix whose entries are ranged in [0, 1],
measuring the reliability of each Fourier component. When
2; approaches to 1, the i-th Fourier component of blur kernel
is reliable, and will contribute more to the deconvolution.
When €; approaches to 0, its corresponding component will
be ruled out, making the deconvolution result free from the
adverse effect of kernel estimation error. Also, along with the
deconvolution quality improvement, the more accurate clean
image will lead to better reference FS estimation, which will
mutually facilitate subsequent clean image estimation.

The proposed model has commonality in essence with
the partial Fourier imaging model, where the latent image
is recovered from its partially sampled Fourier coefficients.
In the proposed partial deconvolution model, the partial map
2 works as the sampling matrix in partial Fourier imaging
problem. If the sampling matrix satisfies the restricted isometry
property (RIP) [40], [41], the latent image can be successfully
recovered with a high probability. The partial map €2 in partial
deconvolution model changes during E-M alternations, and the
number of non-zero entries in £ should also be sufficiently
large to guarantee the high probability of correct recovery of
Fourier spectrum. The extensive results in Section V exper-
imentally validate the feasibility of the partial deconvolution
model.

IV. INCORPORATION WITH DECONVOLUTION METHODS

In the M-step, given the partial map €2, the deconvolution
step can be realized by specifying R(x), and can be applied in
various deconvolution models. In this section, we take wavelet-
based and learning-based models as examples to show how to
apply partial deconvolution for robust deblurring.

A. Partial Deconvolution in Wavelet-Based Model

In this subsection, we take the frame-based wavelet [31] in
synthesis form for partial deconvolution (PDW), formulated as

A 2
¢ = argmin 5 H QFKW' ¢ — SZFyH + ey, (29)
c
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Algorithm 2 PDW

Input:
clean image x
Output: clean image x
s =1,¢c0 = Wx(o), uV = ¢
2: for t =1 to Tapg do
3: 7z(t) — u® — LLfoS (u(t))

i e = mgmin { %]l - 20+ el }

blurry image y, blur kernel k, partial map €2, initial
(0)

s G(tH1) — LEV144(s)*

: 2

6 ulttd = 4+ L (c®) — c(t=D)
7: end for

8 x=WTcl®

where W is the wavelet transform bases, the clean image x
can be represented by the wavelet coefficients ¢ under W.

We employ the accelerated proximal gradient (APG) algo-
rithm, which has been widely used in image restoration
methods, e.g., FISTA [46] and GAPG [47], to solve this
problem. By setting fs (¢) = %H QFKWT¢ — SleHz. Instead
of directly minimizing (29), APG algorithm decomposes it into
a sequence of quadratic subproblems at chosen points u®,
which can be written as

. Ly
min—L e —u®|2 + (v £s@®), e —u®) + el (30)
where L ¢ is the Lipschitz constant of V fg, and its value can
be set based on || fs(u;)— fs(up)| < L|lu; —uz||. The gradient
V fs (u®) can be written as

V fs (u) = \WK'F7 @7 (stKwTu<’> - sty) . 3D

The matrix multiplication can be efficiently computed in
Fourier domain, and the fast wavelet transform implementa-
tion.
And the proximal subproblem is simply an £;-norm mini-
mization problem,
¢ = argmi Lf e =z 32
= argmin—fle — 2I” + el (32)
where z) = u® — LinS(u(’)), and it can be solved by
soft-thresholding operation [14]. Finally when the wavelet
representation ¢ has been optimized, clean image x can be
recovered by x = W'e.

The overall PDW algorithm can be summarized as
Algorithm 2.

B. Partial Deconvolution in Learning-Based Model

Recently, the discriminative learning-based method has
arisen in image restoration applications and achieved superior
performance [48]-[50]. We hereby show that the partial decon-
volution can also be applied in the discriminative learning-
based model (PDL).

By specifying the regularization term R(x) as fields of
experts (FoE) [32] to learn the distribution of natural images,
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the partial deconvolution model can be formulated as
N N,
min —||fg(y> Fak®@x)*+ D > Ri ((pi ®x);),
j=li=l
(33)

where p; is linear filters with diverse patterns to extract infor-
mation from natural images, and R; is non-linear transform.
Due to its powerful expression, the regularization has been
recently applied in discriminative learning for a variety of
image restoration tasks [22], [37], [51], e.g., Gaussian denois-
ing, JPEG deblocking, super-resolution, where efficiency and
effectiveness can be concurrently guaranteed.

Due to the high non-convexity of the optimization problem
Eqn. (33), it is difficult to solve it in closed-form, and we
instead use the %radlent descent method. Given the parameters
0n =10, p(' ')}N’ for stage t where N, is the number
of filters and non- hnear transforms, the clean image is updated
by

Ny
X0 = 57D 3" pOTRO) (-
i=1
_ JOKTETQT (SlFKx(”l) - sty) . (G4

The parameters @) = {1, pl@, R;t)}l&l can be learned
under the discriminative learning framework. Given the train-
ing set {xft,ys,ks}le, where S is the number of training
images, the parameter for stage ¢ can be learned by solving a
bi-level optimization problem,

o0
1
= inL(0) = —
arg min (©) 3212 X g
N, /
1. X0 =N SRR )

i=1
—/OKTFTROT (2OFKx( ) — @Fy,)
(35)

As suggested in [22], [51], the non-linear transform R; can
be parameterized as mixture of Gaussian RBFs,

R;(Z) Z”U exp( Z_ﬂj)z),

which is the combination of M Gaussian RBF kernels with
precision factor y and mean value u;, and z;; is the combi-
nation coefficients.

Once the non-linear function is parameterized, the parame-
ters for stage ¢ are @) = {1, p(t) (t)} i~ 1» whose gradient
can be computed by the chain rule. Then the gradient-based
LBFGS method can be used to learn parameters for each stage,
and end-to-end training is utilized to further jointly fine tune
all the parameters over stages.

(36)

C. Implementation

The p value indicating the accuracy of kernel is set as 0.96,
and C is set as 0.01. As for the threshold 7z, we adopt an
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Fig. 3. Components analysis of PDW and its variants. In the sky close-ups, PDW(£ = 1) generates significant ringing effects, while the results by PDW and
PDW(£2/0) are visually plausible due to the partial deconvolution. Besides, the result by PDW(R) is over-smoothed due to the 30% lost entries in random
partial map.

adaptive strategy. Let 7,,;, = min; ¢(|i€|,-, If(x\)li), and we
set

7 = min (l, Tmin + 37)

0.1 )
exp(Stmin) .
Thus, more inaccurate the blur kernel is, more entries will
be ruled out. Along with the increase of 7,,;,, 7 should have
smaller gain than 7,,;,, indicating that blur kernel is more
accurate.

As for PDW, the iteration number Tg)s in the E-M alterna-
tions is set as 8. In the APG algorithms, the iteration number
Tapc is set as 50, and the Lipschitz constant Ly is fixed as a
relatively large value 3 to guarantee the convergence. As for
PDL, the iteration number Tgjs in of the E-M alternations is
set as 15, and thus the PDL contains 16 stages where each
entry in 2 for the first stage is fixed as 1. We utilize N, = 24
non-linear transform and linear filters with size 5 x 5, and the
number of Gaussian RBFs is set as M = 63.

Fig. 4. Ten test images and eight blur kernels.

TABLE I

AVERAGE PSNR VALUES OF PDW AND ITS VARIANTS
ON THE SYNTHETIC DATASET

Levin et al. [52] Krishnan ef al. [3]  Sun et al. [45]
PDW(Q =1) 19.02 19.75 21.80
V. EXPERIMENTAL RESULTS PDW(€2/0) 19.19 19.87 21.82
) . . . PDW(R) 19.01 19.70 21.66
In this section, we evaluate the partial deconvolution PDW 19.38 19.97 21.92

methods. First, to validate the effectiveness of the partial
deconvolution model, we take PDW as an example to quanti-
tatively evaluate PDW and its variants, analyzing the contribu-
tion of each component to the robust deblurring. Also PDW is
compared with several state-of-the-art deblurring algorithms.
Then, on two standard test datasets, given blur kernels esti-
mated by some blind deconvolution methods, the proposed
methods are compared with two state-of-the-art non-blind
deconvolution methods, assessed in terms of both quantitative
metrics and running time. The algorithm running time is
recorded on a computer with 4.00GHz Intel(R) Core(TM)
17-6700K CPU. Finally, the proposed partial deconvolution
method is applied to real blurry images.

A. Validation of Partial Deconvolution Model

We construct a synthetic dataset, in which ten 512 x 512
images and eight blur kernels [2] are used to generate synthetic
blurred images, shown as Fig. 4. For all the blurred images,
the Gaussian noise with ¢ = 0.5 was added. First, we analyze
the contribution of each component in PDW, and then PDW is

evaluated on the synthetic dataset compared with competing
algorithms.

1) Component Analysis: On the synthetic dataset, we report
the performance of PDW and its two variants, including
PDW(£2/0) in which zero points are not added into partial
map, and PDW( = 1) that is equivalent to the conventional
deconvolution model.

Table I reports the average PNSR comparison of variants of
PDW. One can see that the partial map contributes more to the
PSNR gain, while performance gain by adding zero points is
very small. In kernel error free deconvolution, spectrum zero
points are the main source of ringing effects [33] due to the
entry-wise division in Fourier domain. However, as to decon-
volution with inaccurate blur kernel, blur kernel estimation
error can cause not only ringing effects but also other artifacts
like color distortion, much exceeding the adverse effects of
spectrum zero points. As for the visual quality, Fig. 3 shows
an restoration example, where Levin et al.’s method [52] is
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(e) IRCNN [19] (f) ROBUST [27]

Fig. 5.
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(g) Spectrum [28]

(h) PDW

Example of deblurred results on synthetic blurred image. Except (g) Spectrum [28] estimating blur kernel itself, all the non-blind deconvolution

methods i.e., (b)-(f) and (h), use the same blur kernel as input estimated by Krishnan er al. [15] shown in (a).

used to estimate blur kernel. The kernel estimation error is
visible compared with the groundtruth one, and will severely
cause artifacts. With the partial map, PDW and PDW(£2/0)
can both obtain much more visually plausible results than the
conventional one PDW( = 1), indicating the effectiveness of
the partial deconvolution. Moreover, the results by PDW and
PDW(£2/0) are less distinguishable, which indicates that the
partial map contributes more to the performance gain than the
zero points in FS. Besides, it is interesting to provide a variant
of PDW with random partial map, i.e., PDW(R), whose 30%
entries of partial map are randomly set as 0. Its performance is
inferior to PDW in terms of both quantitative PSNR and visual
quality. Due to the lost frequency information, the deblurred
result of PDW(R) intends to be over-smoothing.

2) Comparison With Competing Algorithms: To quantita-
tively evaluate the performance of PDW, we compare it with
several non-blind deconvolution methods, including gradient-
based methods: FTVd [14], HyperLap [15]; filter-based
method: CSF [22]; patch-based method: EPLL [16]; CNN-
based method: IRCNN [19] and the method for handling
kernel error: ROBUST [27]. To estimate the blur kernels,
we apply three blind deconvolution methods, including
VB-based method: Levin et al. [52], MAP-based method:
Xu & Jia [44], patch-based method: Sun et al. [45].

TABLE II

AVERAGE PSNR COMPARISONS WITH COMPETING ALGORITHMS.
THE BLUR KERNELS ARE ESTIMATED BY THREE BLIND
DECONVOLUTION METHODS

Levin et al. [52] Krishnan ef al. [3] Sun et al. [45]
FTVd [14] 18.63 19.42 21.64
HyperLap [15] 18.66 19.53 21.71
CSF [22] 19.08 19.79 21.80
EPLL [16] 19.05 19.80 21.81
IRCNN [19] 19.26 19.86 21.95
ROBUST [27] 19.11 19.82 21.80
PDW 19.38 19.97 21.92
Spectrum [28] | 20.07

Table II reports the average PSNR comparison of
these competing methods. Compared with conventional
methods, one can see that PDW achieves the best
average PSNR values. Fig. 5 shows the visual quality
comparison. In the red close-up, the deblurring results
by all the other competing methods suffer from the color
distortion, while PDW achieves much superior visual quality.
Moreover, since the image residual in ROBUST [27]
absorbs more textures, its deblurring result is over-
smoothed, while PDW can recover more detailed textures.
Considering the CNN-based method, i.e., IRCNN [19],
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Groundtruth

ROBUST [27]

Fig. 6. Example of deblurred results on Levin et al.’s dataset [2]. The blur kernel is estimated by Cho&Lee [29].

PDW is a little inferior only for Sun et al. [45].
When the kernel estimation error is severe, e.g., for
Krishnan et al., CNN denoisers should be strengthened
to weaken the adverse effects of kernel error, and yield
over-smoothed results as shown in Fig. 5. Furthermore,
CNN priors in IRCNN can also be incorporated into our
partial deconvolution model.

Besides, we report the results of Spectrum-based blind
deconvolution [28] method, in which both blur kernel esti-
mation and non-blind deconvolution are just ran as they are.
On our constructed synthetic dataset, Spectrum-based method
achieves PSNR 20.07dB that is higher than Levin et al. [2]
and Krishnan et al. [3]. The comparable performance can
be contributed to the well conditioned Fourier spectrum
estimation. But the phase retrieval is too ill-posed to produce
the best restoration quality. As shown in Fig. 5, more severe
kernel estimation error by Spectrum-based method yields more
visible ringing and distortion. Thus, we in this paper conclude
that it is a better solution to employ Fourier spectrum as a
reference for non-blind deconvolution to recover high quality
clean image, with some good blind deconvolution method such
as Sun et al. providing estimated blur kernel.

B. Evaluation on Synthetic Datasets

In this subsection, we further evaluate PDW and PDL on
two standard test datasets. To train PDL, we need to construct
the training dataset. The blurry images were generated from
100 clean images in the BSD dataset [54] by convolving with
8 blur kernels [2], and then Gaussian noise with o = 0.25 were
added. To save computational time, we used two optimized
executable programs for blind deconvolution to estimate blur
kernels, i.e., Cho&Lee [29] and Xu&lia [44]. So we have
1600 training samples, and we further select 500 samples with
error ratio [2] above 3 to guarantee the quality of training
samples. In the following comparison, the proposed methods
are only compared with two competing deblurring algorithms,
i.e., EPLL [16] and ROBUST [27].

On the two test datasets, i.e., Levin et al.’s dataset [2] and
Kohler et al.’s dataset [53], PDW and PDL are compared
with EPLL [16] and ROBUST [27]. Tables III and IV report
the average PSNR comparison on Levin ef al.’s dataset, and
Kohler et al.’s dataset, respectively. PDW and PDL both
achieve better results than the competing algorithms, espe-
cially PDL achieves the highest average PSNR. In terms
of visual quality, Fig. 6 shows a deblurred example on
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ROBUST [27]
Fig. 7.

TABLE III

AVERAGE PSNR COMPARISON OF DEBLURRING RESULTS ON
LEVIN et al.’s DATASET INCLUDING 4 CLEAN IMAGES
AND 8 BLUR KENRELS. WE ALSO REPORT THE
AVERAGE RUNNING TIME

EPLL [16] ROBUST [27] | PDW _ PDL

Cho&Lee [29] 28.83 28.79 2892 2927
Xu&lia [44] 29.45 29.37 2931  29.55
CPU time (sec) | 127.1 59.73 [61.14 2183

Levin et al.’s dataset. One can see that the results by PDW and
PDL suffer less ringing effects, and PDL recovers more details
than the other methods. From the example on Kohler et al.’s
dataset shown in Fig. 7, one can draw the similar conclu-
sion that the partial deconvolution contributes to the artifacts
removal, and more detailed textures can be recovered. We also
note that blurry images in Kohler ef al.’s dataset are with
mildly spatially variant blur.

We also report the running time on Levin et al.’s dataset
in Table III. PDW is based on wavelet sparsity as ROBUST,
but has extra computational cost for estimating partial map.
Thus PDW is a little inefficient than ROBUST, but is two times
faster than EPLL. Meanwhile, PDL is much more efficient than
all the other competing algorithms.

PDW
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NI

PDL

Example of deblurred results on Kohler ef al.’s dataset [53]. The blur kernel is estimated by Xu&lJia [44].

TABLE IV

PSNR COMPARISON OF DEBLURRING RESULTS ON KOHLER et al.’s
DATASET INCLUDING 4 CLEAN IMAGES AND 12 BLUR KERNELS,
AND BLUR KERNELS ARE ESTIMATED BY XU&IJIA [44]

Method #1 #2 #3 #4 Avg.
EPLL [16] 31.64 26.64 31.45 2842 | 2953
ROBUST [27] | 3149 2645 31.68 2830 | 29.48
PDW 31.63 2656 31.70 28.38 | 29.56
PDL 31.54 26,53 3196 28.33 | 29.59

C. Evaluation on Real Blurry Images

On real blurry images, we used Sun ef al.’s method [45] to
estimate blur kernels. We report the deblurring results by PDW
compared with EPLL [16] and ROBUST [27]. Fig. 8 shows
that the deblurring results by PDW significantly achieve
much more visually plausible quality, with less distortions
and ringing effects. For the first image, the texts recovered
by PDW suffer from less ringing artifacts than EPLL and
ROBUST. For the second image, the eye recovered by both
EPLL and ROBUST has severe distortion, while the result
by PDW is more visually plausible. For the third image,
the result by PDW also has less artifacts than EPLL and
ROBUST.
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EPLL [16]

Blurry images
Fig. 8.

VI. CONCLUSION

In this paper, we proposed a novel partial deconvolution
model, in which the deconvolution is partially performed
with the reliable Fourier coefficients within the partial map.
An E-M framework was developed to update the partial map
and clean image alternatively. The proposed partial deconvolu-
tion can be incorporated into the existing deconvolution mod-
els for robust deblurring, and we give two examples, i.e., the
wavelet-based and learning-based deconvolution methods.
With the partial deconvolution model, the adverse effect of
kernel estimation error can be suppressed. Compared with
state-of-the-art non-blind deconvolution methods, the partial
deconvolution methods are able to relieve not only ringing
effects but also other distortions. In blind deconvolution, blur
kernel estimation error generally is inevitable, and in future
work we will study the incorporation of CNN priors into
partial deconvolution model for possible further improvement,
and investigate more powerful modeling on inaccurate blur
kernel for robust deblurring.
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