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Learning Iteration-wise Generalized
Shrinkage-Thresholding Operators for Blind

Deconvolution
Wangmeng Zuo, Dongwei Ren, David Zhang, Shuhang Gu and Lei Zhang

Abstract—Salient edge selection and time-varying regulariza-
tion are two crucial techniques to guarantee the success of maxi-
mum a posterior (MAP)-based blind deconvolution. However, the
existing approaches usually rely on carefully designed regular-
izers and handcrafted parameter tuning to obtain satisfactory
estimation of the blur kernel. Many regularizers exhibit the
structure-preserving smoothing capability, but fail to enhance
salient edges. In this paper, under the MAP framework, we
propose the iteration-wise `p-norm regularizers together with
data-driven strategy to address these issues. First, we extend
the generalized shrinkage-thresholding (GST) operator for `p-
norm minimization with negative p value, which can sharpen
salient edges while suppressing trivial details. Then, the iteration-
wise GST parameters are specified to allow dynamical salient
edge selection and time-varying regularization. Finally, instead
of handcrafted tuning, a principled discriminative learning ap-
proach is proposed to learn the iteration-wise GST operators
from the training dataset. Furthermore, the multi-scale scheme
is developed to improve the efficiency of the algorithm. Exper-
imental results show that, negative p value is more effective in
estimating the coarse shape of blur kernel at the early stage,
and the learned GST operators can be well generalized to other
dataset and real world blurry images. Compared with the state-
of-the-art methods, our method achieves better deblurring results
in terms of both quantitative metrics and visual quality, and
it is much faster than the state-of-the-art patch-based blind
deconvolution method.

Index Terms—blind deconvolution, kernel estimation, image
deblurring, hyper-Laplacian, discriminative learning.

I. INTRODUCTION

Blind image deconvolution aims to recover the latent sharp
image x and blur kernel k from the blurry observation

y = k⊗ x + n, (1)

where ⊗ denotes 2D convolution and n is additive Gaussian
white noise. Blind image deconvolution generally involves
two stages, i.e., blur kernel estimation and non-blind de-
convolution, where the former is crucial to the success of
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the algorithm. There are two classes of popular blur ker-
nel estimation strategies: variational Bayes (VB)-based and
maximum a posterior (MAP)-based ones. Levin et al. [1]
showed that naive MAP prefers trivial delta kernel solution
while the VB-based approaches are more robust in estimating
the blur kernel. This observation has motivated several VB-
based methods for image deconvolution [2–7]. However, the
approximation of integration is required, making VB-based
methods computationally inefficient.

Recently, with the introduction of salient edge selection
and time-varying regularization, interest in improved MAP
has been revived for efficient blind deconvolution with many
representative methods [8–11]. MAP jointly estimates the pair
(k,x) by maximizing a posterior probability,

max
x,k

Pr(x,k|y) ∝ max
x,k

Pr(y|x,k) Pr(x) Pr(k), (2)

where Pr(x,k|y) denotes a posterior on (x,k), Pr(x) and
Pr(k) are the priors of the latent sharp image and the blur
kernel, and Pr(y|x,k) denotes the likelihood of the observa-
tion y. The MAP model can be equivalently rewritten as,

min
k,x

λ

2σ2
n

‖k⊗ x− y‖2 + φ (x) + µϕ (k) , (3)

where σn is the standard deviation (std.) of the additive
Gaussian white noise, and φ (x) and ϕ (k) are the regularizers
on x and k, respectively. Widpf and Zhang [6] recasted
VB as MAP with spatially-adaptive sparse prior to explain
the connections between the existing VB [2–4] and MAP
approaches [12, 13].

Our work is motivated by the two key techniques, i.e.,
salient edge selection [12] and time-varying regularization,
which have been widely adopted in MAP-based blind decon-
volution. However, we re-analyze these techniques by raising
three questions:

1) Salient edge selection is widely used to explicitly or
implicitly recover salient edges to facilitate kernel es-
timation [12–17]. In [12], shock and bilateral filters
are employed in each iteration to enhance strong edges
while suppressing harmful small-scale textures. Actually,
bilateral filter is a smoothing operator and shock filter is
a sharpening operator, while the regularizers like `0-norm
[16] result in a structure-preserving smoothing operator.
Thus, our first question is: is it possible to extend the
existing regularizers, e.g., `p-norm [18], to achieve both
smoothing and sharpening capability?
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Figure 1: Illustration of the GST operators with different p values, intermediate edge images and estimated blur kernels. The GST operator is
the solution to the `p-norm minimization problem x̂ = argminx

1
2
(x− y)2 + λ|x|p, and in the left plot the horizontal and vertical axes are

denoted by y and x̂, respectively. In the initial stage, the GST operator with negative p value can impose a larger threshold for suppressing
small-scale textures and magnifying the salient edges. Then, by gradually increasing the p values along with iteration, we can include more
gradient details for refining the kernel estimation.

2) Time-varying regularization is also widely adopted in
blind deconvolution. To better estimate the blur kernel
k, the salient edges should be dynamically recovered to
guide the algorithm gradually converge to the desired
solution. For example, in [12] parameters of the shock
and bilateral filters are tuned to select the strongest edges
at first, and subsequently the estimated kernel is refined
by the gradually added details. In [8, 15, 19, 20], the
regularization parameter λ is set small in the first a few
iterations to preserve strong edges, and then gradually
increases along with iteration to produce accurate blur
kernel. So, our second question is: is there a family of
priors (each iteration has its own parameters) for blind
deconvolution?

3) Most existing approaches involve carefully designed reg-
ularizers and handcrafted parameter tuning to guide the
algorithms to converge to the desired solution. It is inter-
esting to ask the question: can we learn the iteration-wise
regularization parameters using the data-driven strategy?

In this paper, we address above problems based on the MAP
framework with iteration-wise regularizers. For the second
problem, we adopt a family of hyper-Laplacian distribution
Pr(d) ∝ e−‖d‖

p
p/λ on gradient d = ∇x, where each iteration

has its own parameters (pi, λi). The resulting `p-norm mini-
mization problem can be readily solved using the generalized
shrinkage-thresholding (GST) operator [18]. Thus, iteration-
wise GST operators are exploited in our MAP framework.
For the first problem, we extend the GST operator for `p-norm
minimization with negative p value. GST is computationally
efficient and can well imitate the shock and bilateral filters in
enhancing salient edges while smoothing small-scale textures.
As shown in Fig. 1, GST with p = −1 magnifies the strongest
edges so that the coarse shape of blur kernel can be rapidly
estimated. With the increase of p value, e.g., p = 0 and
p = 0.2, GST gradually adds more gradient details to refine
the estimated blur kernel.

For the third problem, we propose a discriminative learn-
ing method to learn the iteration-wise regularization param-
eters, i.e. GST operators, from the training dataset. Fur-
thermore, multi-scale scheme is employed to improve the
efficiency and effectiveness by learning regularization pa-
rameters over scales (S − 1, ..., s, ..., 0) and inner itera-

tions (1, ..., t, ..., T ). As illustrated in Fig. 2, in the train-
ing stage a discriminative learning framework is used to
greedily learn the iteration-wise regularization parameters by
minimizing the weighted mean square error (MSE) between
the estimated gradient images / blur kernels and the ground
truth ones, i.e. we greedily learn (λ(s,t), p(s,t)) after learn-
ing {(λ(S−1,1), p(S−1,1)), ..., (λ(s,t−1), p(s,t−1))}. In the de-
blurring stage, kernel estimation is performed over scales
(S − 1, ..., s, ..., 0). One-step solutions by the augmented
Lagrangian method (ALM) are adopted to update the blur
kernel k and the latent image gradient d so that the pa-
rameters (λ(s,t), p(s,t)) can be optimally determined via the
gradient descent method. When the inner iteration t reaches
the maximum value T , the estimated blur kernel k(s,T ) and
latent gradient d(s,T ) would be upsampled to be used as
the initialization of the finer scale s − 1, i.e., k(s−1,1) and
d(s−1,1). Experimental results show that the learned iteration-
wise GST operators can be directly applied to other dataset and
real world blurry images. The proposed method can achieve
visually more plausible results than the existing gradient prior
based methods, including both MAP [12, 13, 15] and VB [2],
and also outperforms the state-of-the-art patch based method
[21] in terms of both deblurring quality and efficiency.

This paper is a substantial extension of our pioneer work
[22]. Compared with [22], the coarse-to-fine framework is
adopted to improve the kernel estimation performance, more
experiments are conducted to evaluate the proposed method,
and more analyses and discussions are presented. We summa-
rize our contributions from three aspects:

1) We generalize the GST operator for `p-norm minimiza-
tion with negative p values, which can magnify the salient
edges while suppressing trivial textures, making it very
promising in coarse estimation of the blur kernel.

2) By specifying iteration-wise GST operators, a novel
MAP-based blind deconvolution method is developed
to naturally select proper salient edges for robust blur
kernel estimation, which makes the estimated blur kernel
free from the trivial delta kernel solution and gradually
converge to the desired solution.

3) To avoid heavy parameters tuning, we propose a princi-
pled discriminative learning approach to learn iteration-
wise GST operators from a training dataset, and the
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Figure 2: The proposed iteration-wise learning framework employs the coarse-to-fine strategy. In the learning stage, given the scale s, the
iteration-wise GST operators can be greedily learned from the downsampled training dataset D(s), and in the deblurring stage, the learned
iteration-wise GST operators are used for blur kernel estimation.

learned parameters can be directly applied to other
datasets and real blurry images.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III presents the proposed
iteration-wise framework for blur kernel estimation together
with the specially designed one-step ALM solutions. Section
IV learns the optimal GST operators using the proposed
principled discriminative learning framework. Section V gives
the experimental results, and Section VI ends this paper with
some conclusions and discussions.

II. RELATED WORK

For better blur kernel estimation, it is critical to impose
regularization to guide the MAP based algorithms to be away
from the trivial delta kernel solution. In this section, we briefly
review the existing regularizers on the latent image x and the
blur kernel k.

A. Regularization on latent image

1) `p-norm regularizers: In [23], it has been shown that the
gradients of natural images can be well modeled with hyper-
Laplacian distribution, where the `p-norm (0.5 < p < 0.8) was
suggested as the regularizer in non-blind image restoration. In
blind deconvolution, one natural choice is the total variation
(TV) regularizer with p = 1 [8]. However, the small p
value usually produces sparser gradients and better kernel

estimation. Wipf and Zhang [6] suggested `p-norm with p� 1
and Xu et al. adopted the l0-norm regularizer [16].

It is interesting to note that, even though Levin et al.
[1] theoretically analyzed that TV based blind deconvolution
(TVBD) [8] and its variants would converge to the trivial delta
kernel [1, 9, 19], several TVBD algorithms [8, 9] actually
succeed in estimating blur kernel and latent image. To explain
the incongruence between the success of TV in [8] and the
failure of TV in [1], Perrone and Favaro [9] revealed that
Chan and Wong [8] actually adopted a projected alternating
minimization algorithm for TVBD, and the success of the
algorithm can be explained by the delayed normalization of
blur kernel.

Using the half-quadratic strategy, the updating of the latent
image x in Eq. (3) can be split to the following two subprob-
lems

min
x

λ

2σ2
n

‖k⊗ x− y‖2 + δ

2
‖∇x−w‖2, (4)

min
w

δ

2
‖∇x−w‖2 + ‖w‖pp, (5)

where the gradient operator ∇ = {∇h,∇v} includes the
horizontal and vertical directions. The w subproblem in (5)
can be efficiently solved using the look-up table method [23]
or the GST operator [18]. Specifically, when p = 0 the w
subproblem can be solved by hard-thresholding [16, 18].

To improve the performance of blur kernel estimation,
one usual strategy is to gradually increase the regularization
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parameters λ along the iterations. However, to the best of our
knowledge, no studies were given on the iteration-wise tuning
of the p values. Moreover, although discriminative learning has
achieved state-of-the-art performance in non-blind restoration
[24–27], most existing blind deconvolution methods solely rely
on handcrafted tuning of the regularization parameters.

2) Other forms of regularizers: Other gradient-based reg-
ularizers have also been developed to enhance strong edges
for better kernel estimation. In [15], Krishnan et al. extended
the standard `1-norm gradient prior to a normalized version
‖∇x‖1/‖∇x‖2 to avoid the trivial delta kernel solution, and in
[28], Paragios et al. proposed a discrete MRF prior to produce
highly sparse gradients. Different from gradient priors that
only model connections among adjacent pixels, patch-based
priors that can better model large-scale structures provide
a better way to extract salient edges for kernel estimation
[21, 29, 30]. Moreover, by exploiting the patch sparsity of
sharp image on an over-complete dictionary, sparse represen-
tation based approaches have also been developed for blind
deconvolution [31, 32].

B. Regularization on blur kernel

The basic regularizer on blur kernel is the non-negative con-
straint ki ≥ 0,∀i and the normalization constraint

∑
i ki = 1,

which naturally come from the property of camera shake blur.
Furthermore, the camera shake trajectory is a 1D connected
path, so it is reasonable to enforce the sparsity on kernel.
Although a variety of blind deconvolution methods [12, 15, 21,
33] do not explicitly impose the sparsity regularizer, in their
implementations, hard-thresholding operation is performed to
assign any ki ≤ ε to zero, where ε is some small positive
number, implicitly enhancing its sparsity. Meanwhile, other
gradient sparsity regularizers, e.g., TV [8] and hyper-Laplacian
[23, 34], have also been suggested to avoid the trivial delta
kernel solution [10].

Moreover, based on the observation that blurring reduces
the frequencies of sharp image, spectral priors of blur kernel
can be extracted from the blurry observation [35–40]. Along
this line, several works [38, 39] indicate that the texture-only
blurry images can also be successfully handled, but still rely
on the salient structures to better acquire spectral information
of kernel [37, 39].

In this work, we adopt the sparsity on kernel together with
the non-negative and normalization constraints, and focus on
the development of iteration-wise regularizers on latent image
x.

III. KERNEL ESTIMATION WITH ITERATION-WISE MAP

In this section, we first formulate our iteration-wise MAP-
based model in the gradient space. We then extend the GST
operator for `p-norm minimization to the case with p < 0,
which is used to sharpen salient edges while smoothing triv-
ial textures. Finally, one-step augmented Lagrangian method
(ALM) is proposed to update the latent sharp image gradient
d and blur kernel k alternatively.

A. Problem Formulation

As suggested in [12, 13, 15, 33], we formulate the proposed
MAP-based blind deconvolution model in the gradient space,

min
d,k

λ

2σ2
n

‖k⊗ d−∇y‖2 + φ (d) + µϕ (k) , (6)

where d = ∇x with dh = ∇hx and dv = ∇vx. Gradient
images have been widely adopted in the existing blind decon-
volution methods [1, 2, 9, 12, 15, 16]. As explained in [12],
the use of gradient images can make the blur kernel estimation
better conditioned. And empirical studies have validated the
superiority of gradient images against intensity images [2].

As to the image priors, we impose the hyper-Laplacian prior
on gradients d,

Pr(d) ∝ e−‖d‖
p
p/λ . (7)

Instead of uisng fixed parameters in existing methods, in this
work the parameters {λ, p} are iteration-wisely set. Moreover,
since the image d is the gradient of some image x, the
constraint d = ∇x should be satisfied, which has been often
omitted in existing blind deconvolution models. In this work,
the constraint d = ∇x is explicitly expressed as [41, 42],

∇hdv = ∇vdh. (8)

As to the priors on kernel k, we simply enforce its sparsity
via hyper-Laplacian prior,

Pr(k) ∝ e−µ‖k‖
0.5
0.5 , (9)

together with the non-negative constraint and the normaliza-
tion constraint ∑

i
ki = 1, ki ≥ 0,∀i. (10)

One may choose the iteration-wise regularization parameters
for k. But our experiments show that simultaneously learning
of the parameters for d and k cannot obtain better results than
only learning parameters for d. Taking both efficiency and
simplicity into account, we fix p = 0.5 for k in our model.

The coarse-to-fine multi-scale strategy is adopted in most
blind deconvolution methods [2, 4, 12, 13, 15, 21, 33, 43] to
make the kernel estimation more robust and efficient. In this
work, we also employ the multi-scale framework, where blur
kernel estimation is performed over scales (S − 1, ..., s, ..., 0)
and inner iterations (1, ..., t, ..., T ). The blurry input y is
downsampled to S scales, i.e., y(0), ...,y(s), ...,y(S−1). On
the coarsest scale, i.e., blurry input y(S−1), the blur kernel
is first estimated, and then upsampled as the initialization of
scale S − 2. The coarse-to-fine kernel estimation procedure
is recursively performed until the finest scale y(0) = y. The
overall multi-scale kernel estimation process is summarized in
Algorithm 1.

Given scale s and iteration t, by incorporating the con-
straints in Eqns. (8) and (10) and the priors in Eqns. (7) and (9)
into Eq. (6), the iteration-wise MAP-based blind deconvolution
model is formulated as:

min
d,k

λ(s,t)

2σ2
n

∥∥k⊗ d−∇y(s)
∥∥2 + ‖d‖p(s,t)

p(s,t)
+µ ‖k‖0.50.5

s.t. ∇hdv = ∇vdh,
∑
i ki = 1, ki ≥ 0,∀i,

(11)
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where λ(s,t) and p(s,t) are iteration-wise GST parameters that
can be learned from a training dataset.

Since all the scales share the same kernel estimation pro-
cedure, in the following context, given scale s and iteration t,
we simplify (s, t) as (t) to more clearly present the alternative
updating of the blur kernel k and the latent image gradient d.

B. GST and its extension to p < 0

The model in Eq. (11) is a non-convex `p-norm minimiza-
tion problem. By far, many optimization methods [18, 44–47]
have been developed for `p-norm (0 ≤ p ≤ 1) optimization .
Among these methods, the generalized iterated shrinkage algo-
rithm (GISA) [18] is very promising due to its computational
efficiency and convergence to better solution. The key of GISA
is to introduce a generalized shrinkage-thresholding (GST)
operator to solve the following basic `p-norm minimization
subproblem,

x̂ = argmin
x

1

2
(y − x)2 + λ|x|p. (12)

The GST operator [18] is defined as

x̂ =

{
0, if |y| ≤ τGSTp (λ) ,
sgn (y)SGSTp (|y|;λ) , if |y| > τGSTp (λ) ,

(13)

where the threshold τGSTp (λ) is given by

τGSTp (λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p , (14)

and the unique minimum SGSTp (|y|;λ) can be found by
solving the following equation

SGSTp (|y|;λ)− y + λp
(
SGSTp (|y|;λ)

)p−1
= 0. (15)

Zuo et al. [18] suggested an iterative algorithm to compute
SGSTp (|y|;λ) by repeatedly performing the following shrink-
age step

|x| =
(
|y| − λp(|x|)p−1

)
. (16)

When 0 ≤ p ≤ 1, the GST operator can always obtain the
optimal solution to the subproblem in Eq. (12).

From Eqns. (14) and (16), one can easily see that GST
with 0 ≤ p < 1 actually is a smoothing operator. However,
as illustrated in [12], rough kernel estimation is benefited
by both the smoothing of harmful small-scale textures and
the sharpening of salient edges. To this end, Cho et al.
[12] adopted the bilateral filter for image smoothing and the
shock filter for edge sharpening. And one natural problem
is to ask whether we can extend GST to possess the ability
of thresholding and expansion. Interestingly, one can easily
verify that by setting p as a negative value, the solution
SGSTp (|y|;λ) by GST in Eq. (16) becomes a thresholding-
expansion operator. Therefore, the extended GST operator with
p < 0 can employ the thresholding rule to suppress detailed
textures and utilize the expansion rule to enhance strong edges,
which in spirit is similar with the bilateral and shock filters
adopted in [12].

The tradeoff between smoothness and sharpness is crit-
ical for blind deconvolution. In the early stage of kernel
estimation, the sharpness plays an important role. Thus we

use the GST operator with p < 0, which can magnify the
salient edges to enhance the sharpness while simultaneously
introducing a larger threshold for suppressing ringing artifacts
and small-scale textures. Along with iteration we increase p
to appropriate positive values for optimal tradeoff between
smoothness and sharpness. Moreover, instead of handcrafted
tuning, we adopt a discriminative learning framework to learn
the iteration-wise GST operators from a training dataset, which
will be explained in detail in Section IV.

C. Alternating minimization

We adopt the alternating minimization method to solve the
MAP-based blind deconvolution model in Eq. (11). (i) Fixing
k, a one-step hybrid ALM method is adopted to update d
by considering the equality constraint in Eq. (8); (ii) Fixing
d, a one-step ALM method is employed to update k. In the
following, we describe the algorithms for updating d and k
in details.

1) Updating d via one-step hybrid ALM: By fixing the blur
kernel as the current estimation k(t−1), the problem on d is
formulated as

min
d

λ(t)

2σ2n

∥∥∥k(t−1)⊗d−∇y
∥∥∥2+‖d‖p(t)p(t)

s.t. ∇Tc d = 0, (17)

where ∇c=[∇v,−∇h]. With the half-quadratic strategy, we
introduce an auxiliary variable w, decomposing the d problem
into the following two subproblems,

w(t)=argmin
w

β(t)

2

∥∥w−d(t−1)
∥∥2+‖w‖p(t)

p(t)
,

d(t)=argmin
d

λ(t)

2σ2n

∥∥k(t−1)⊗d−∇y
∥∥2+β(t)

2

∥∥w(t)−d
∥∥2

s.t. ∇Tc d = 0,

(18)

where β is the penalty parameter. The w-subproblem and
d-subproblem usually need to be updated alternatively with
several iterations, but this will make the relationship between
d(t) with (λ(t), p(t)) hard to analyze and non-differential.
Therefore, we set the number of inner-iteration to be 1,
resulting in the one-step hybrid ALM method.

In Eq. (18), the solution to w is obtained by the extended
GST operator with p < 0. With the GST operator, the solution
is,

w
(t)
i =

 0, if d(t)i ≤ τ
(t)
i ,

sgn
(
d
(t)
i

)(∣∣∣d(t)i ∣∣∣− 1

β(t) p
(t)
(∣∣∣d(t)i ∣∣∣)p(t)−1) , else,

(19)

where the threshold τ (t)i is defined as

τ
(t)
i =

(
2

β(t)

(
1−p(t)

)) 1

2−p(t)

+
1

β(t)
p(t)
(

2

β(t)

(
1−p(t)

)) p(t)−1

2−p(t)

. (20)

The d-subproblem is a quadratic programming problem
with equality constraint, which can be solved by the La-
grangian dual method [42]. The Lagrangian function is

L(d,ν) = λ(t)

2σ2n

∥∥∥k(t−1)⊗d−∇y
∥∥∥2+β(t)

2

∥∥∥w(t)−d
∥∥∥2+ νT∇Tc d,

(21)
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where ν is the Lagrangian vector. The closed-form solution
can be obtained by

d(t)= Ω−1
(
η + β(t)w(t)

)
, (22)

where Ω = AT
kAk+β

(t)I, η = λ(t)

σ2n
ATk∇y−∇cν(t), and the

Lagrangian vector is updated as:

ν(t)=
(
∇Tc Ω−1∇c

)−1∇Tc Ω−1
(
AT

k∇y+β(t)w(t+1)
)
. (23)

The main computational burden is the matrix inversion and
multiplication on the convolution matrix Ak corresponding to
the blur kernel k. Assuming the periodic boundary condition
of blurry image, the convolution matrix Ak is a block circulant
with circulant blocks (BCCB) matrix that can be diagonalized
via Fourier transform, and the matrix inversion and multipli-
cation in Eqns. (22) and (23) can be efficiently computed by
using fast Fourier transform (FFT).

2) Updating k via one-step ALM: By fixing the gradient
image as the updated estimation d(t), the problem on k can
be formulated as:

min
k

λ(t)

2σ2n

∥∥∥k⊗d(t)−∇y
∥∥∥2+µ‖k‖0.50.5 s.t.

∑
i

ki=1, ki≥0,∀i, (24)

By introducing two auxiliary variables h = k and g = k, we
use the standard ALM to reformulate Eq. (24) as:

min
k,h,g

λ(t)

2σ2n

∥∥k⊗d(t)−∇y
∥∥2+B(h)+δ

(t)
1

2

(
1Tk−1

)2
+µ(t)‖g‖0.50.5

s.t. k = h,k = g,
(25)

where 1 is a vector whose entries are all 1, and B(h) is a
boundary constraint defined as follows:

B (hi) =

{
+∞, if hi < 0,
0, else. (26)

With the standard ALM, the problem on k in Eq. (25) can be
solved by iteratively solving the following three subproblems,

h(t)=min
h

δ
(t)
2

2

∥∥k(t−1)−h
∥∥2+B (h) ,

g(t)=min
g

δ
(t)
1

2

∥∥k(t−1)−g
∥∥2+µ(t)‖g‖0.50.5,

k(t)=min
k

λ(t)

2σ2
n

∥∥k⊗ d(t)−∇y
∥∥2+ δ

(t)
3

2

(
1Tk−1

)2
+
δ
(t)
2

2

∥∥k−h(t)
∥∥2+ δ

(t)
1

2

∥∥k−g(t)
∥∥2.

(27)

Also, the updating of h(t), g(t), k(t) can be performed for
several times. In this work, to make the relationship between
k(t) and λ(t) explicit, we update h(t), g(t), k(t) only one step,
resulting in our one-step ALM method.

As to the h-subproblem, it can be easily solved by an entry-
wise projection operator,

h
(t)
i =

{
k
(t−1)
i , if k(t−1)i > 0,

0, else.
(28)

The g-subproblem is a `p-norm minimization, which can be
simply solved by the GST operator [18]. Finally, the k-
subproblem is a quadratic optimization problem whose closed-
form solution is

k(t)=Φ−1ζ, (29)

where ζ = λ(t)

σ2
n

Ad∇y + δ
(t)
1 g(t) + δ

(t)
2 h(t) + δ

(t)
3 1 and

Φ=λ(t)

σ2
n

AT
d Ad+δ

(t)
1 I+δ

(t)
2 I+δ

(t)
3 11T . 11T is a matrix with

all entries being 1, which fortunately is also a BCCB matrix,
and the corresponding matrix inversion and product can be
efficiently computed by FFT.

Algorithm 2 summarizes the main steps of our alternating
minimization algorithm at scale s.

Algorithm 1 Multi-scale image deconvolution
Input: Blurry image y, scale number S
Output: Blur kernel k and latent image x

1: Initializing d(S−1) and k(S−1)

2: for s = S − 1 to 0 do
3: Downsampling y to y(s)

4: Inputing y(s), d(s), k(s) and {θ(s,1), ...,θ(s,t), ...,θ(s,T )} to
Algorithm 2 that returns d(s) and k(s)

5: if s > 0 then
6: Upsamping d(s) and k(s) to d(s−1) and k(s−1)

7: end if
8: end for
9: k = k(0)

10: Given k, recovering x by non-blind deconvolution

Algorithm 2 Kernel estimation on scale s

Input: Blurry image y, d(0), k(0) and {θ(1), ...,θ(t), ...,θ(T )}
Output: Blur kernel k and latent gradient d

1: for t = 1 to T do
2: // Lines 3-4 solve d-step Eq. (18)
3: w(t) = GST

(
d(t−1), p(t), 1/β(t)

)
4: d(t) = Ω−1

(
η + β(t)w(t)

)
5: // Lines 6-8 solve k-step Eq. (27)

6: h(t) = argmin
h

δ
(t)
2
2
‖k(t−1) − h‖2+B (h)

7: g(t) = GST
(
k(t−1), 0.5, µ(t)/δ

(t)
1

)
8: k(t) = Φ−1ζ
9: Updating β(t+1), δ(t+1)1 , δ(t+1)2 , δ(t+1)3

10: end for
11: k = k(t) and d = d(t)

IV. DISCRIMINATIVE LEARNING OF ITERATION-WISE GST
OPERATORS

Given the scale number S and the inner iteration num-
ber T in each scale, the number of GST parameters
to be set in the proposed iteration-wise MAP frame-
work is 2 × S × T , i.e. {{(λ(S−1,t), p(S−1,t))}Tt=1, ...,
{(λ(s,t), p(s,t))}Tt=1, ..., {(λ(0,t), p(0,t))}Tt=1}. For such a large
amount of parameters, hand-crafted tuning is impractical.
Therefore, in this section we propose a discriminative learning
framework [48] to learn the iteration-wise GST operators from
a training dataset.

Denote the training dataset by D = {(d(gt)
i ,k

(gt)
i ,∇yi)}Ni=1,

which includes N blurry images together with the groundtruth
clear images and blur kernels, i.e., the gradient d

(gt)
i of

the clear image, the blur kernel k
(gt)
i , and the gradient of

the blurry image ∇yi. Since the multi-scale framework is
adopted in kernel estimation, given scale s, the training
dataset D is sampled to the corresponding size, i.e., D(s) =
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{(d(s,gt)
i ,k

(s,gt)
i ,∇y

(s)
i )}Ni=1 with D(0) = D. Given scale s

and iteration t, to estimate θ(s,t) =
{
λ(s,t), p(s,t)

}
, the loss

function is defined as the weighted MSE on D(s),

L(s,t)(θ)=
N∑
i=1

L
(s,t)
i (θ) =

∑N
i=1 α

(t)L
(s,t)
di

(θ) + L
(s,t)
ki

(θ)

=
N∑
i=1

α(s,t)

2

∥∥∥d(s,t)
i −d

(s,gt)
i

∥∥∥2/∣∣∣d(s,gt)
i

∣∣∣+ 1
2

∥∥∥k(s,t)i −k
(s,gt)
i

∥∥∥2/∣∣∣k(s,gt)
i

∣∣∣ ,
(30)

where | · | counts the entries of the vector for the normalization
of image and kernel sizes, and α denotes the trade-off param-
eter. Note that our aim is to estimate the desired blur kernel.
Thus the second term in Eq. (30) should be emphasized,
especially at the early stage. Therefore, we let the α value
increase along with the scale numbers and iteration numbers.
In the first a few iterations the GST operators are learned with
small α for rapid kernel estimation, and then the GST operator
is learned with larger α value for refining the estimated kernel
while yielding better estimation on the latent clear image.

The overall learning procedure over scales is summarized in
Algorithm 3 with more details introduced as follows. Similar
to the kernel estimation in Section III, given scale s and
iteration t, we simplify (s, t) as (t) to more clearly present
the learning algorithm.

A. Learning algorithm

We greedily learn the GST parameters for each iteration
using the gradient descent method, and the partial derivative
of loss function L(t)

i (θ) w.r.t. θ(t) needs to be computed first.
The updating rules of blur kernel k and the latent gradient
image d in Section III are specially designed as one-step
ALM solutions, which make the loss function differentiable.
From Eqns. (19), (22), (29), and (30), we have the following
observations:
• L

(t)
i (θ) is a function of d

(t)
i and k

(t)
i ;

• d
(t)
i is a function of w

(t)
i and λ(t);

• w
(t)
i is a function of p(t);

• k
(t)
i is a function of λ(t).

With these observations, the partial derivative of loss function
L
(t)
i (θ) w.r.t. θ can be written as,

∂L
(t)
i

∂θ
=

(
α(t)

∂L
(t)
di

∂p
, α(t)

∂L
(t)
di

∂λ
+
∂L

(t)
ki

∂λ

)
. (31)

The partial derivative of L(t)
i w.r.t. p only includes the partial

derivative of L
d

(t)
i

w.r.t. p, which based on Eq. (22) can be
obtained by

∂L
(t)
di

∂p =
∂L

(t)
di

∂d
(t)
i

∂d
(t)
i

∂w
(t)
i

∂w
(t)
i

∂p

=
(
β(t)/

∣∣dgti ∣∣ ) (d
(t)
i −dgti

)T
Ω−1

∂w
(t)
i

∂p .
(32)

The partial derivative of w
(t)
i w.r.t. p can be obtained based

on Eq. (19)

∂w
(t)
i

∂p
=

0, if d(t)i ≤τ
(t)
i ,

−
sgn

(
d
(t)
i

)
β(t)

((∣∣∣d(t)i ∣∣∣)p−1+p(∣∣∣d(t)i ∣∣∣)p−1ln(∣∣∣d(t)i ∣∣∣)),else,
(33)

where the threshold τ(t)i in Eq. (20) is approximated by setting
p as p(t−1).

As to the partial derivative of L(t)
i w.r.t. λ, it includes the

partial derivatives of L(t)
di

w.r.t. λ and L
(t)
ki

w.r.t. λ. First,
based on Eq. (22), the partial derivative of L(t)

di
w.r.t. λ can be

obtained by

∂L
(t)
di

∂λ =
∂L

(t)
di

∂di
(t)

∂d
(t)
i

∂λ

=1/
(
σ2
n

∣∣dgti ∣∣)(d
(t)
i −dgti

)T
Ω−1
(
ATk∇yi−AT

kAk

)
.

(34)

and then based on Eq. (29), the partial derivative of L(t)
ki

w.r.t.
λ can be obtained by

∂L
(t)
ki

∂λ =
∂L

(t)
ki

∂k
(t)
i

∂k
(t)
i

∂λ

=1/
(
σ2n
∣∣kgti ∣∣)(k

(t)
i −kgti

)T
Φ−1

(
AT

d∇yi−AT
dAd

)
.

(35)

Once the partial derivative of L(t)(θ) w.r.t. θ is obtained,
the optimal θ(t) can be obtained by any gradient descent
method, and we adopt the gradient-based L-BFGS method
[49]. On scale s, the procedures of learning iteration-wise GST
operators are summarized in Algorithm 4.

Algorithm 3 Learning GST operators over scales
Input: Training set D, scale number S
Output:

{
{θ(S−1,t)}Tt=1, ..., {θ(s,t)}Tt=1, ..., {θ(0,t)}Tt=1

}
1: Denoting θ′ as α, µ, β, δ1, δ2, δ3 and initializing θ′(S,T )

2: for s = S − 1 to 0 do
3: Downsampling training set D to D(s)

4: Initializing θ′(s,1) as θ′(s+1,T )

5: Inputing D(s) and θ′(s,1) to Algorithm 4 to learn the optimal
parameters of scale s, i.e. {θ(s,t)}Tt=1

6: end for

Algorithm 4 Learning GST operators on scale s

Input: Training set D and α(1), µ(1), β(1), δ(1)1 , δ(1)2 , δ(1)3

Output:
{
θ(1), ...,θ(t), ...,θ(T )

}
1: for t = 1 to T do
2: grad = 0
3: for i = 1 to N do
4: Updating d

(t)
i Eq. (18) and k

(t)
i Eq. (27)

5: grad = grad + ∂L
(t)
i (θ)/∂θ

6: end for
7: Using gradient based L-BFGS method to search optimal θ(t)

8: Updating α(t+1), µ(t+1) and penalty parametersβ(t+1),δ(t+1)1 , δ(t+1)2 ,
δ
(t+1)
3

9: end for

B. Implementation

In our implementation, some extra constraints are taken to
improve the robustness and stability of the learned iteration-
wise GST operators. In [8, 15, 19, 20], the regularization
parameter λ begins with some small value and gradually
increases along with the iteration numbers. As to the p value,
p = 0 is first adopted to estimate the blur kernel, and then
p = 0.5 is adopted for the final restoration [16]. As a summary,
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both λ and p values should be non-decreasing along with the
iteration numbers. Thus, in our greedy learning procedure, for
each scale s, the non-decreasing constraints on both λ and
p are imposed, i.e., λ(s,t+1) ≥ λ(s,t) and p(s,t+1) ≥ p(s,t),
and over the scales, it is reasonable to consider the constraints
λ(s−1,1) ≥ λ(s,T ) and p(s−1,1) ≥ p(s,T ). As to the search
range, λ is constrained in [0.5, 5], and p is constrained in
[−1, 0.2].

Moreover, we set the scale number S = 5, the number of
inner iterations in each scale T = 20, and the dowmsam-
pling rate as 2. Thus, there are 200 GST parameters to be
learned in the proposed iteration-wise MAP framework. Other
parameters, including regularization weight µ and penalty
parameters β, δ1, δ2, δ3, should also be non-decreasing along
with the scales and iterations. Specifically, the regularization
weight µ on blur kernel k is initialized as 1 × 10−6, and
updated by µ(t+1) = min

(
1.1× µ(t), 1× 10−3

)
. The penalty

parameter β is initialized as 1×10−4, and updated by β(t+1) =
min

(
1.5× β(t), 1× 10−2

)
. The three δs are initialized as

1×10−3, and updated by δ(t+1) = min
(
1.1× δ(t), 1× 10−1

)
.

Moreover, we use the noise estimation method [50] to estimate
the std. of the additive Gaussian white noise, and it is assumed
in the range [1× 10−3, 1× 10−2].

C. Discussion

Our learning method is conceptually similar to the cascade
of shrinkage field (CSF) [25], which also adopts the discrim-
inative learning approach to learn the iteration-wise image
priors on filter responses. After greedy learning of the param-
eters iteration-by-iteration, a joint learning over iterations is
performed to globally fine-tune the iteration-wise parameters.
However, the CSF is designed for non-blind deconvolution,
while our model is designed for blind deconvolution where the
robust blur kernel estimation can be achieved by the learned
GST operators. Moreover, we adopt the multi-scale scheme
to learn the iteration-wise GST operators over scales and
iterations, while CSF only learns the parameters at the finest
scale.

V. EXPERIMENTAL RESULTS

For quantitative evaluation, two benchmark datasets of
blurry images are used to test the performance of the proposed
method, where Levin et al.’s dataset [1] is adopted to illustrate
the learnability of iteration-wise GST operators, and Sun et
al.’s dataset [21] is employed to validate the generalization
of the proposed method to other blurry images. To evaluate
the restoration quality, we use three quantitative metrics, i.e.,
PSNR, SSIM [51], and error ratio [1] which is defined as,

Error Ratio =
∥∥xgt − x̂k̂

∥∥/∥∥xgt − x̂kgt

∥∥ , (36)

where x̂k̂ and x̂kgt are the recovered images using the
estimated blur kernel k̂ and the groundtruth blur kernel kgt,
respectively. To evaluate the computational efficiency, we
report the CPU running time. Our method is compared with
several competing methods, including three edge-based MAP
approaches [12, 15, 16, 21] and one VB approach [2]. All the

experiments were ran on a computer with 3.30GHz Intel(R)
Xeon(R) CPU.

We further evaluate the proposed method on real world
blurry images, and compare it with two state-of-the-art edge-
based uniform deblurring approaches [16, 21]. The reason to
choose these methods is that they are the top two competing
methods based on the quantitative metrics on the two datasets.

A. Training the iteration-wise priors

Levin et al.’s dataset [1] contains 4 clear images and 8
blur kernels, and is used to determine model parameters and
to demonstrate the feasibility of the proposed discriminative
learning method. In the learning procedure, the trade-off
parameter α(s,t) is introduced to balance the contributions of
the blur kernel k and the image gradient d terms in Eq. (30),
where a small α is first adopted to avoid the trivial delta kernel
solution and subsequently α is increased to guide the algorithm
to converge to the groundtruth blur kernel and clear image.
Thus, α(s,t) is initialized with a sufficiently small number,
i.e., α(S−1,1) = 1× 10−3, and gradually increases along with
the training iterations, i.e., α(s,t+1) = min(ρα(s,t), 1).

We analyze the effect of the increasing rate ρ. Fig. 3 shows
the learned GST parameters obtained using three ρ values, i.e.,
1.0, 1.1, 1.2. For any ρ, both λ and p begin with small values
and then gradually increase along with scales and iterations,
validating the consistency of the trend for dynamic selection of
GST operators for kernel estimation. The larger ρ = 1.2 makes
α increase more rapidly, making the learned GST parameters
also increase rapidly. Specially, when ρ = 1.0, the α is fixed
to its initial value 1 × 10−3, and the contribution of the
image gradient d term keeps constant. Table I lists the mean
PSNR, SSIM and Error Ratio values using the learned GST
operators with different ρ values. In terms of all the three
quantitative metrics, our learning method with ρ = 1.1 leads
to the best results, and thus ρ = 1.1 is adopted in the following
experiments.

Table I: The results on Levin et al.’s dataset [1] by our learning
methods with different ρ values

PSNR SSIM Error Ratio
ρ = 1.2 30.88 0.9198 1.2303
ρ = 1.1 30.91 0.9238 1.2210
ρ = 1.0 30.24 0.9076 1.2635

Table II: Comparisons of mean PSNR, mean SSIM, mean error ratio
and mean running time (seconds) on Levin et al.’s dataset [1].

PSNR SSIM Error Ratio Time
Known k 32.31 0.9385 1.0000 —

Krishnan et al. [15] 28.26 0.8547 2.3746 8.9400
Cho & Lee [12] 28.83 0.8801 1.5402 1.3951
Levin et al. [2] 28.79 0.8922 1.5592 78.263
Xu & Jia [16] 29.45 0.9000 1.4071 1.1840
Sun et al. [21] 30.85 0.9191 1.2244 191.03

Ours(-1) 28.63 0.8899 1.6235 10.403
Ours(0.2) 29.08 0.9057 1.4181 10.830

Ours(Logistic) 30.89 0.9214 1.2228 10.549
Ours(Re-train) 30.80 0.9188 1.2257 10.981

Ours 30.91 0.9238 1.2210 10.998

To validate the effectiveness of iteration-wise priors, we also
consider two variants of our method by fixing the p value as
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Figure 3: The learned iteration-wise p and λ values for each scale and iteration.

−1 (i.e. Ours(-1)) and 0.2 (i.e. Ours(0.2)), while the other
parameters remain the same with our method (i.e., Ours).
From Table II, the proposed method with iteration-wise p
values outperforms Ours(0.2) and Ours(-1) in terms of all the
three performance metrics. Fig. 5 shows the deblurring results
using these three methods. One can see that the proposed
method with iteration-wise p values can obtain more accurate
estimation of blur kernel and visually more pleasing result of
the deblurring image, validating the superiority of iteration-
wise priors against the fixed ones.

We further evaluate the stability of the learned parameters
from two aspects. In these experiments, except the iteration-
wise λ and p values we keep the other parameters unchanged.
First, we fit these curves with the modified logistic function
to avoid the storage of the learned paramters. As shown in
Fig. 3 and Table II, the fitted curves can well approximate
the learned parameters, and the results based on the fitted
curves are moderately inferior to those based on the learned
curves. Considering that our method has 200 parameter values
to store, we still report the results of our method based on
the learned optimal parameters in the following experiments.
Second, we use another synthetically blurred dataset to re-train
the iteration-wise priors. The dataset contains 10 clear images
with diverse contents and 8 blur kernels randomly selected
from the dataset [52]. Then the learned priors were applied to
Levin et al.’s dataset. Table II shows that the re-trained priors
can also produce satisfying results. Since the images and blur
kernels are quite different from Levin et al.’s dataset, it is
reasonable that the results by the newly trained parameters
are marginally inferior to our method based on the original
parameter curves. Therefore, we conclude that the learned
parameters are stable with the training dataset, and one can
obtain similar performance by using the learned parameters
on other training datasets.

Finally, we compare the proposed method with five com-
peting approaches, including four MAP approaches [12, 13,
15, 21] and one VB approach [2]. The three quantitative
metrics and running time of all the methods are listed in
Table II. In terms of all three quantitative metrics, the proposed
method performs much better than the gradient-based methods
[2, 12, 13, 15] and is even a little better than Sun et al.’s patch-
based method [21]. Fig. 6 shows the curves of the accumulated

error ratios, and the proposed method succeeds in recovering
100% cases with the error ratio below 3, which is deemed as
the threshold for visually plausible perception. Moreover, we
provide the mean PSNR and SSIM values w.r.t. each individual
blur kernel, as shown in Fig. 7, from which one can see that
the proposed method can achieve the best deblurring quality
in general. Fig. 4 shows the visual deblurring results of one
blurry image. The blur kernel estimated by our method is
more accurate than the other methods, leading to more visually
plausible latent image. As to the computational efficiency,
the proposed method is slower than the methods of Cho &
Lee [12] and Xu & Jia [16], partially due to their optimized
implementations in C/C++, but is more than 15 times faster
than Sun et al. [21].
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Figure 6: Comparison of error ratios of the competing methods
on Levin et al.’s dataset, and the values in the legend indicate the
corresponding mean error ratio.

B. Evaluation on Sun et al.’s dataset

Sun et al.’s dataset [21] includes 80 clear images and 8 blur
kernels, which is used to test the generalization capability of
the learned GST operators. In the blur kernel estimation stage,
the proposed method directly adopts the iteration-wise GST
operators learned on Levin et al.’s dataset to the blurry images
from Sun et al.’s dataset [21]. In the non-blind deconvolution
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Ground truth Cho & Lee [12] Krishnan et al. [15] Levin et al. [2] Xu & Jia [16] Sun et al. [21] Ours

Figure 4: Example of deblurring results on Levin et al.’s dataset.

    
          Ground truth                         Ours(-1)                             Ours(0.2)                             Ours 

Figure 5: Example of deblurring results of the three variants of our method on Levin et al’s dataset.
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Figure 7: Mean PSNR and SSIM for each kernel on Levin et al.’s
dataset. The methods from left to right are Krishnan et al. [15], Cho
& Lee [12], Levin et al. [2], Xu & Jia [16], Sun et al. [21], and Ours,
respectively.
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Figure 8: Comparison of error ratios of the competing methods
on Sun et al.’s dataset, and the values in the legend indicate the
corresponding mean error ratio.
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Figure 9: Mean PSNR and SSIM of each kernel on Sun et al.’s dataset.
The methods from left to right are Krishnan et al. [15], Cho & Lee
[12], Levin et al. [2], Xu & Jia [16], Sun et al. [21], and Ours,
respectively.

Table III: Comparisons of mean PSNR, mean SSIM, mean error ratio
and mean running time (seconds) on Sun et al.’s dataset [21].

PSNR SSIM Error Ratio Time
Known k 32.35 0.9536 1.0000 —

Krishnan et al. [15] 22.76 0.8136 6.8351 159.29
Cho & Lee [12] 26.13 0.8624 5.0731 10.518
Levin et al. [2] 24.64 0.8606 4.5798 518.59
Xu & Jia [16] 28.11 0.9016 3.2843 6.2940
Sun et al. [21] 29.32 0.9200 2.4036 3911.1

Ours(-1) 28.03 0.9032 3.2083 99.193
Ours(0.2) 28.58 0.9152 2.9802 98.231

Ours 29.35 0.9231 2.3901 98.071

stage, for fair comparison the same method [53] is used
to perform the final deblurring for each of the competing
methods.

Table III lists the three quantitative metrics and running time
of all the methods on Sun et al.’s dataset, and the proposed
method achieves better results than all the competing methods.
It is interesting to note that, our method is nearly 40 times
faster than Sun et al. [21], partially because the test image sizes
from Sun et al.’s dataset is generally much larger than those
from Levin et al.’s dataset. Moreover, the proposed method
with iteration-wise p values is also superior to Ours(0.2) and
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Ours(-1) on Sun et al.’s dataset, which demonstrates that the
superiority of iteration-wise priors can be well generalized
to other blurry images. In Fig. 11, the deblurring result
with iteration-wise p values obviously suffers less artifacts at
windwill.

As shown in Fig. 8, when the error ratio is more than 2.6, the
proposed method achieves the best success rate. As illustrated
in Fig. 9, in terms of both PSNR and SSIM, our method
can obtain better deblurring quality for 5 out of 8 kernels.
Fig. 10 shows the visual effect comparison of the competing
methods, where our method performs better in recovering
detailed textures. In Fig. 12, although all the methods can
not accurately estimate the blur kernel, our deblurring result
is more visually plausible.

C. Evaluation on real blurry images

In this subsection we evaluate the performance of the
proposed method on real blurry photographs, and compare it
with the the top two competing methods based on Tables II
and III, i.e., Xu & Jia [16] and Sun et al. [21]. Fig. 13 shows
the deblurring results on three real blurry images. For the
image roma, our method and Sun et al.’s method can achieve
satisfactory deblurring results, while the result by Xu & Jia
has visible color distortions in the red close-up. The second
image is taken in low light condition. The results by Xu &
Jia and Sun et al. suffer severe distortions and noise in the
red and green close-ups, while the result by our method is
more clear and visually plausible. Moreover, the third image
vehicle is severely blurred, and our method achieves much
better result. For example, the license number can be roughly
read as ”N15 5826” from the deblurring result by our method,
but it is difficult to be recognized from the results by both
Xu & Jia [16] and Sun et al. [21]. For the green and yellow
close-ups, although all the results are not good, the result by
our method is visually more pleasant, while the distortions like
ringing effects are much more severe for Xu & Jia and Sun
et al.

VI. CONCLUSIONS

In this paper, by generalizing the GST operator to the case
with p < 0, we proposed an iteration-wise MAP framework for
blind deconvolution. Then a discriminative learning method
was developed to learn iteration-wise GST operators from
a blurry image set. The learned GST operators begin with
p < 0 to avoid trivial delta kernel solution, and gradually
increase with iterations for accurate blur kernel estimation.
The proposed method can be directly applied to other dataset
and real world blurry images. Experimental results showed
that the proposed method performs better than the competing
methods in terms of both quantitative metrics and visual effect,
and is much faster than the state-of-the-art patch-based method
[21].

The proposed iteration-wise learning method was designed
on the image gradients, and thus has limitations to model
patch-level structures. In our future work, we will investigate
the appropriate framework to learn iteration-wise priors for
image patches or filter responses. Moreover, to improve kernel

estimation performance, joint learning over iterations can also
be used to fine-tune the greedily learned parameters.
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