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Abstract

Image with non-uniform blurring caused by camera shake can be modeled as a linear combination of the
homographically transformed versions of the latent sharp image during exposure. Although such a
geometrically motivated model can well approximate camera motion poses, deblurring methods in this line
usually suffer from the problems of heavy computational demanding or extensive memory cost. In this paper,
we develop generalized additive convolution (GAC) model to address these issues. In GAC model, a camera
motion trajectory can be decomposed into a set of camera poses, i.e., in-plane translations (slice) or roll
rotations (fiber), which can both be formulated as convolution operation. Moreover, we suggest a greedy
algorithm to decompose a camera motion trajectory into a more compact set of slices and fibers, and together
with the efficient convolution computation via fast Fourier transform (FFT), the proposed GAC models
concurrently overcome the difficulties of computational cost and memory burden, leading to efficient
GAC-based deblurring methods. Besides, by incorporating group sparsity of the pose weight matrix into slice
GAC, the non-uniform deblurring method naturally approaches toward the uniform blind deconvolution.
Experimental results show that GAC-based deblurring methods can obtain satisfactory deblurring results
compared to both state-of-the-art uniform and non-uniform deblurring methods, and are much more efficient
than non-uniform deblurring methods.

Keywords: camera shake; image deblurring; non-uniform deblurring; blind deconvolution; fast Fourier
transform

1 Introduction
Image blur is generally inevitable due to various fac-
tors such as defocus, camera shake, etc. Blind deblur-
ring from a real world blurry image that needs to es-
timate the blur procedure and latent sharp image is
a very ill-posed problem. Recently, several hardware-
assist approaches had been developed [1–6], by which
additional information can be acquired to reduce the
ill-posedness of the blind deblurring. These hardware-
assist approaches can provide much easier deviation of
the blur or sharp image, but require complex camera
configurations [1, 2] or dedicatedly designed hardware
support [3–6], far from taking the place of traditional
imaging devices. At the same time, in the era of ubiqui-
tous acquisition of digital images using portable imag-
ing devices, e.g., digital camera, mobile phone, camera
shake is often unavoidable during exposure procedure,
a major cause that ruins a photograph. For effective
and efficient deblurring, it is crucial to develop appro-
priate forward blur model that can well explain the
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image degradation process of camera shake, and then
to design proper regularizers and efficient optimization
algorithms.

Earlier approaches on camera shaken deblurring usu-
ally assume that the blur is spatially invariant, due to
which the blurry observation can be simply modeled
as convolution of sharp image and blur kernel, and de-
blurring can thus be modeled as a blind deconvolution
problem [7–12], where much attention had been devot-
ed to design effective optimization algorithms. Since
the convolution operation can be computed efficient-
ly via fast Fourier transform (FFT), these blind de-
convolution algorithms are commonly efficient. On one
hand, Fergus et al. [7] adopted a mixture-of-Gaussians
for representing the distribution of gradients, and in-
troduced a variational Bayesian (VB) approach [13] to
estimate the blur kernel. The theoretical and experi-
mental analysis by Levin et al. [8] demonstrated the
advantages of variational Bayesian (VB) over maxi-
mum a posterior (MAP), and inspired a number of VB-
based blind deconvolution algorithms [7, 8, 14, 15]. On
the other hand, by enforcing sparser priors [10, 16, 17]
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or exploiting edge prediction step [9, 18–21] to selec-
t salient edges in latent image, several carefully de-
signed MAP algorithms can also exhibit promising per-
formance. Most recently, discriminative learning ap-
proaches had been developed to learn proper priors
for better estimating blur kernel [22–25].

However, camera shake blur is often spatially vary-
ing, and consequently cannot be simply modeled as
a single blur kernel. Thus, how to reasonably model
camera shake blur plays a central role in non-uniform
deblurring problem that can be categorized from 2 as-
pects. One direct strategy is to approximate the non-
uniform blur as multiple blur kernels, where the blurry
image is divided into several regions, and each region
takes uniform blur. The multiple blur kernels can then
be estimated from each region by performing uniform
blind deconvolution method locally [26]. However, this
approach does not consider the global constraints on
local blur kernels based on camera motion trajectory.
The other geometrical strategy is based on the pro-
jective motion path blur model (PMPB) [27], where
a camera shake trajectory can be decomposed into a
sequence of camera poses lying in the 6D camera pose
space (x-, y-, z-axes rotation, and x-, y-, z-axes trans-
lation), and consequently the sharp image projected
by each pose is a homography, which is then weighted
according to its exposure time, resulting in the blur-
ry image. By far, there are mainly two simplified 3D
geometrical models to approximate the 6D subspace,
i.e., Whyte et al. [28] suggested to employ x-(pitch),
y-(yaw), and z-(roll) axes rotation, while Gupta et al.
[29] proposed to adopt x- and y-axes (in-plane) trans-
lation and z-axis rotation. By combining the global
camera motion constraint and the efficient filter flow
(EFF) framework [30], Hirsch suggested to construct
local uniform blur models guided by the geometrical
constraint [31].

Even in the simplified 3D camera pose subspace
[28, 29], non-uniform deblurring methods still suffer
the problem of high computational cost or extensive
memory burden, placing prominent restriction on it-
s wide applications. To speed up the blur estimation
step, Gupta et al. [29] pre-computed a sparse matrix
for each homography transform, and thus the forward
non-uniform blur operator can be equivalently defined
as the weighted sum of the homography transform ma-
trices, and Hu and Yang [32] further restricted the pos-
sible camera pose in a low dimensional subspace. Al-
though the pre-computation techniques can relatively
relax the computational inefficiency, these accelerated
methods [29, 32] take increasing memory burden to
store the huge homography transform matices. Even
so, subsequent computation of homography transfor-
m matrices is still computationally costly, and thus it

is interesting to ask that is it possible to design for-
ward blur model to benefit from FFT for efficient non-
uniform deblurring?

In this paper, we propose generalized additive con-
volution (GAC) model, by which a camera motion tra-
jectory can be decomposed into in-plane translations
(slice) or roll rotations (fiber), resulting in slice GAC
model or fiber GAC model. In slice GAC model, a ho-
mography is formulated as the rotation of the convolu-
tion image of slice and sharp image, and in fiber GAC
model, a homography is the inverse polar transform of
the convolution of a kernel with the transformed sharp
image (Please refer to Section 3.2 for detailed proof),
in which the convolution operation can be efficiently
computed with the help of FFT. By this way, the GAC-
based forward blur models only require several FFTs
and a number of pixel-wise operations, significantly
reducing computational complexity, and concurrently
only the basis kernels and a number of rotation ma-
trices are required to be stored so that the problem of
memory burden is also relaxed. Furthermore, a greedy
algorithm is proposed to generate a more compact set
of slices and fibers from any camera motion trajecto-
ry, resulting in hybrid GAC model, a more promising
way to concurrently solve the problems of computa-
tional inefficiency and memory burden. As for the op-
timization algorithm, we adopt the MAP framework to
alternatively estimate non-uniform blur and latent im-
age, in which generalized accelerated proximal gradien-
t (GAPG) algorithm [33], a much efficient optimization
algorithm for non-blind deconvolution, is employed for
GAC-based non-uniform deblurring.

Moreover, in slice GAC, we introduce group sparsity,
i.e., l2,1-norm, on the pose weight matrix along the ro-
tation angle dimension, interestingly providing a way
to make non-uniform deblurring approach toward uni-
form blind deconvolution. Under alternative minimiza-
tion framework, we also propose an effective solution
to solve this problem. With the group sparsity con-
straint, more slices with rotation angles around 0 can
be activated, and extremely when all the slices excep-
t angle 0 are inactivated, the non-uniform delburring
method can degrade to uniform blind deconvolution.

Experimental results show that the proposed GAC
method can obtain comparable or better deblurring
results than the competing uniform and non-uniform
deblurring methods. Compared to non-uniform deblur-
ring method, GAC has a much lower peak memory
usage than [16, 29, 32], and is much more efficient
than the state-of-the-art camera shake removal meth-
ods [16, 28, 29, 31, 32].

We summarize our contributions as follows:
(1) We develop generalized additive convolution (GAC)

framework together with two GAC models, i.e., s-
lice GAC and fiber GAC, for forward modeling
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Figure 1 PMPB model for camera shake blurring

of camera shake blur, by which FFT can be em-
ployed for efficient computation.

(2) To further reduce the computational complexity,
a greedy algorithm is proposed to generate hybrid
GAC from any camera motion trajectory, result-
ing in a more compact GAC model.

(3) As for the optimization algorithm, we adopt a fast
gradient method, i.e., GAPG [33], to estimate la-
tent image, contributing to the faster convergence
of the deblurring algorithm.

(4) By imposing group sparsity of pose weight matrix
in slice GAC, we interestingly provide a way to
connect uniform and non-uniform deblurring.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief review on camera shake models
and optimization algorithms. Section 3 presents the
proposed GAC models, which in Section 4 are embed-
ded in non-uniform deblurring, and can be efficiently
solved via GAPG. Section 5 presents experimental re-
sults, and finally Section 6 concludes this paper.

2 Prerequisites and Related Work
For efficient non-uniform deblurring, it is crucial to
design forward blur models and efficient optimization
algorithms. In this section, we briefly review the orig-
inal projective motion path blur (PMPB) model and
its simplified 3D approximation, and the optimization
algorithms in MAP-based deblurring.

2.1 Homography based model

In the PMPB model, a camera shaken image is ge-
ometrically the integration of what the camera ’sees’
along the motion trajectory that can be modeled in a
6D camera pose space including x-, y-, z-axes rotation
and x-, y-, z-axes translation. With the discretion of
the time t and camera pose space, the integration can
be rewritten as the weighted summation of all homo-
graphies in the discrete camera pose space, where a
homography is the transformed sharp image projected
by corresponding camera pose.

For each pose j along the camera motion trajectory,
the corresponding homography can be represented as:

Hj = C

(
Rj +

tj
d

[
0 0 1

])
C−1 (1)

where C is the matrix of camera intrinsic parameters,
d is the depth of the scene, Rj and tj are the rotation
matrix and translation vector, respectively.

GivenHj , we can construct the corresponding warp-
ing matrixKj . Fig. 1 shows a flowchart of PMPB mod-
el, the PMPB model treats the process of non-uniform
blur as a summation over the images transformed by
the warping matrix

b =
∑

j
wjKjx+ v = Kx+ v (2)

where wj is the fraction of time the camera spent at
pose j, b ∈ Rn×n is the blurry image, x ∈ Rn×n is the
latent sharp image, K is the sparse warping matrix
with size n2×n2, and v denotes the additive Gaussian
white noise.

PMPB is faithful to real world camera motion, but
has too many unknowns to be estimated. Fortunate-
ly, recent studies have shown that the full 6D camera
pose space can be well approximated by the discrete
3D subspace of pitch, yaw, and roll rotations [28], or
the 3D subspace of in-plane translations and roll rota-
tion in wide focal lengths range [29], which are both ef-
fective [34]. In [32], constrained camera pose subspace
was further introduced to refine the set of camera pos-
es. Interestingly, the global camera motion constraint
can be adopted to guide the construction of local blur
kernels [31]. However, the method in [28] suffers from
the problem of heavy computational load to compute
huge warping matrices, while the methods in [29, 32]
suffer from the extensive memory burden problem to
store huge warping matrices.

2.2 Additive convolution model
Deng et al. [35] suggested an additive convolution (AC)
model for non-blind deblurring, where non-uniform



Deng et al. Page 4 of 15

blur is modeled as the weighted summation of the con-
volution of the sharp image with a set of basis convo-
lution kernels

b =
∑C

i=1
αi ◦ (x⊗ ki) (3)

where ki is the i-th basis convolution kernel, αi de-
notes the i-th weight matrix, ⊗ denotes the convolu-
tion operation, ◦ denotes the pixel-wise multiplication
operator, and C is the number of basis convolution
kernels. With FFT, the computational complexity of
AC model is only O(Cn2 log n). Furthermore, princi-
pal component analysis (PCA) is adopted to learn the
basis convolution kernels in advance. However, when
applied to blind non-uniform deblurring, both the ba-
sis kernels and the weighted maps should be updated
in each iteration, making it unpractical in blind de-
blurring of camera shaken images.

In this paper, we propose a fast forward blur mod-
el, i.e., GAC, to represent non-uniform blur caused by
camera shake, which is distinctly different with the ex-
isting models. Instead of utilizing sparse warping ma-
trix [28, 29, 32], GAC models reformulate homogra-
phy as convolution related to slice and fiber, and can
achieve better trade-off between computational cost
and memory complexity. Different from [31], GAC is
an efficient implementation of the global geometric
model rather than the locally uniform approximation.
Compared with [35], the basis convolution kernels and
the weighted maps can be efficiently constructed based
on the camera motion trajectory, and thus is easy to
update.

2.3 MAP-based Blind Deblurring
Given the blurry image b, MAP strategy is usually
adopted to estimate the blur K and the latent sharp
image x by minimizing the negative logarithm of pos-
terior probability with respect to K and x,

−logp(K,x|b) ∝− logp(y|K,x)− logp(x)

− logp(K)

∝1

2
‖Kx− b‖2 + Φ1(x) + Φ2(K)

(4)

where Φ1(x) denotes the regularizer on the laten-
t sharp image, and Φ2(K) denotes the regularizer
on the blur operator. For non-uniform blur, Kx =∑
j wjKjx, where the blur operator is parameterized

by the weights wj . Like the alternative updating strat-
egy commonly adopted in uniform blind deconvolution
[16, 18], the estimation of weight matrix W and latent
image x should be alternatively performed.

To constrain the ill-posed problem for better deblur-
ring quality, proper regularizers should be imposed. In

3D camera pose subspace, only a few poses are ac-
tive given a camera motion trajectory so that it is
reasonable to introduce sparsity on W . In [28, 32], l2-
norm of weight matrix or its gradient is imposed, where
the estimation of W is a linear least square problem,
which can be solved by gradient based optimization
method, while in [29], non-convex regularizer is intro-
duced, which is optimized by an iterative re-weighted
least squares (IRLS).

As for updating the latent clear image, the edge pre-
diction step is usually necessary to guarantee the al-
gorithm converge to the desired solution, so that the
sparsity, e.g., total variation [28, 32], is also imposed.
In earlier researches, simple but efficient optimiza-
tion method, e.g., Rachardson-Lucy (RL) algorithm,
was adopted to solve the problem [27], however the
deblurring results often suffer from ringing artifacts.
As a non-blind deconvolution problem, fast gradient-
based optimization method has been intensively stud-
ied [36, 37]. The iterative shrinkage thresholding al-
gorithm (IST) [36] was first proposed, and due to it-
s simplicity and efficiency, two accelerated IST-based
algorithms had been develped, i.e., FISTA [38] and
TwIST [37], which both possess higher convergence
rate. Furthermore, Zuo and Lin proposed GAPG algo-
rithm [33], which further accelerated the convergence
rate of APG algorithm.

In this paper, the GAC-based deblurring problem
is solved in the alternative minimization framework,
where the updating of pose weight matrix with both
sparsity and group sparsity regularizers can be solved.,
and the updating of latent clear image can be efficient-
ly solved by GAPG algorithm.

3 Generalized Additive Convolution Model
for Camera Shake

In this section, we first propose the general form of the
GAC model, and then decompose camera motion tra-
jectory into slices and fibers, which provides a solution
to specify GAC model for efficient modeling of camera
shake blur. Finally, we propose a greedy algorithm to
generate hybrid GAC model, and discuss the memory
and computational complexity of the GAC model.

3.1 Generalized Additive Convolution Model
The form of the generalized additive convolution
(GAC) model is defined as

b =
∑C

i=1
fi (gi (x)⊗ ki) (5)

where fi and gi are two pixel-wise operators. GAC is
the generalization of the AC model [35], by defining
fi(x) = αi ◦ x and gi(x) = x. Moreover, since both
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fi and gi are pixel-wise operators, the computational
complexity of GAC is the same as that of the AC mod-
el, i.e., O(Cn2log2n), where n2 is the number of pixels
of the image x. The smaller the C value indicates that
GAC model is more efficient. Thus, the key issue of
GAC model is to better specify ki, fi and gi to reduce
the C value.

3.2 Decomposition of slice and fiber
In this subsection, we show that camera poses in the
3D camera pose subspace [29] can be decomposed into
slices and fibers, which then provides proper choices to
design ki, fi and gi in GAC model to reduce C value.

In the 3D camera pose subspace [29], pose in a cam-
era motion trajectory is parameterized as,

θ = (θz, tx, ty) (6)

where θz is the roll angle, tx and ty are the translations
along x- and y- axes, respectively. For each pose in the
3D camera subspace θj = (θz,j , tx,j , ty,j), by defining,

Mθj,r =

 cos θz,j − sin θz,j tx,j
sin θz,j cos θz,j ty,j

0 0 1

 (7)

the homography [39] can be defined as:

Hθj = CMθjC
−1

= C
(
Rθz,j + 1

d ∗ tj
[

0 0 1
])
C−1

= C

 cos(θz,j) − sin(θz,j) tx,j
sin(θz,j) cos(θz,j) ty,j

0 0 1

C−1 (8)

where tj = [tx,j , ty,j , 1]T is the translation vector, d is
the depth of the scene.

As in [29, 32], we also assume that the camera in-
trinsic parameters are known in advance, and the cal-
ibration matrix has the standard form:

C =

∣∣∣∣∣∣
αx 0 x0
0 αy y0
0 0 1

∣∣∣∣∣∣ (9)

where αx = f ∗ mx ccdmx im
is scale factors relating pixels to

distance, mx ccd is the maximum width of the CCD,
mx im is the maximum width of the related image,
αy = f ∗ my ccdmy im

is quantified in the same manner, f is

the focal length, and (x0, y0) is the centre coordinate.
Given Hθj , we can construct the corresponding

warping matrix Kθj (More detailed explanations can
be found in [29, 32, 35] ). We then have that the ho-
mography transform can be decomposed into in-plane
translation followed by roll rotation, yielding the fol-
lowing proposition.

Proposition 1

Kθj = Kθj,rKθj,t

Proof By defining

Rθj,r =

 cos θz,j − sin θz,j 0
sin θz,j cos θz,j 0

0 0 1



Tθj,t =

 1 0 tx,j
0 1 ty,j
0 0 1


and according to the definition of Mθj in Eq. (7)
it is obvious to see that Mθj = Tθj,tRθj,r . Based
on the definition of Hθj in Eq. (8), we can define

Hθj,r and Hθj,t as Hθj,r = CRθj,rC
−1 and Hθj,t =

CTθj,tC
−1. One can easily see that,

Hθj,tHθj,r = CTθj,tC
−1CRθj,rC

−1

= CTθj,tRθj,rC
−1 = Hθj

and we then have

H−1θj = H−1θj,rH
−1
θj,t (10)

Based on the definition of Kθjx, for the pixel at

the location [lx1, lx2, 1]T , Kθjx assigns the value of

the pixel located at H−1θj ([lx1, lx2, 1]T ) of x to the

pixel located at [lx1, lx2, 1] of Kθjx. Based on E-

q. (10), H−1θj ([lx1, lx2, 1]T ) can also be explained as

H−1θj,rH
−1
θj,t

([lx1, lx2, 1]T ), which means that Kθjx =
Kθj,rKθj,tx.

Proposition 1 indicates that, Kθjx is the combina-
tion of two atom operations, i.e., first translating the
image x by tx,j and ty,j along x-axis and y-axis re-
spectively, and then rotating the translated image by
roll angle θz,j . So we can rewrite Kθj,rx and Kθj,tx
as:

Kθj,rx = Rθz,j (x) (11)

Kθj,tx = ktj ⊗ x (12)

where Rθz,j denotes the pixel-wise image rotation op-
eration, and the translation convolution kernel is de-
fined as:

ktj (x, y)

{
1, if x = tx,j and y = ty,j

0, else
(13)
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The non-uniform forward blur model Eq. (2) can be
further formulated as:

Kx =
∑

θj
wθjKθjx =

∑
θj
wθjKθj,rKθj,tx (14)

where wθj denotes the contribution (weight) of pose
θj . It should be noted that, the poses along a real
camera motion trajectory form a connected 1D path,
and thus the weights of most poses are zeros. So in
Eq. (14) we can only consider the subset of poses with
positive weights, P =

{
θj : wθj > 0

}
.

Finally, we define two special classes of subsets of P:
slice and fiber. A slice Sθ is defined as Sθ = {θj =
{θz,j , tx,j , ty,j} : θj ∈ P and θz,j = θ}, while a fiber
Ft is defined as Ft = {θj = {θz,j , tx,j , ty,j} : θj ∈
P and (tx,j , ty,j) = t}. Actually, P can be decomposed
into a number non-intersected slices and fibers. In the
following, we will introduce how to construct slices and
fibers from P and how to reformulate camera shake as
the GAC model.

3.3 Slice based GAC

 

Figure 2 Poses of a camera motion trajectory which form a
slice.

Figure 2 shows an example of a slice of camera pos-
es which have the same roll angle. Given a slice Sθ,
the blur caused by camera motion within Sθ can be
formulated as

Kθx =
∑
θj∈Sθ

wθjKθ,rKθj,tx

=
∑
θj∈Sθ

wθjRθ(ktj ⊗ x)

= Rθ

 ∑
θj∈Sθ

wθjktj

⊗ x


= Rθ (kSθ ⊗ x)

(15)

where kSθ denotes the slice kernel with respect to the
roll angle θ.

For a general camera motion trajectory P, we first
classify the poses in P into a number of non-intersected

slices with P = ∪θ{Sθ}, and then the non-uniform blur
in Eq. (14) can be equivalently reformulated as

Kx =
∑

θ
Rθ (kSθ ⊗ x) (16)

It is obvious that this is a GAC model with fθ(x) =
Rθ(x) and gθ(x) = x. If the range of the roll angles
is discretized into nz intervals, we can see that the
number C in slice GAC should be not higher than nz.

Similarly, we can define the adjoint operator KTy
as

KTy =
∑

θ
k̃Sθ ⊗RT

θ (y) (17)

where k̃Sθ is the adjoint operator of kSθ constructed by
flipping the kSθ upside-down and left-to-right, andRT

θ

is the strict adjoint operator of the discrete version of
Rθ. It is obvious that the adjoint operator in Eq. (17)
is also a GAC model and can be efficiently computed.

Finally, we discuss some implementation issues of s-
lice GAC. To implement Rθ, one can simply adopt the
Matlab command imrotate. To enhance the efficiency,
we maintain a lookup table (LUT) for each discrete roll
angle to record the correspondence of the coordinates
before and after rotation. By discretizing the range of
roll angles into nz intervals, we pre-compute and store
nz LUTs. In the continuous case, R−θ is the adjoin-
t operator of Rθ, but in the discrete case, the error
caused by discretization and interpolation cannot be
overlooked. Thus, instead of using R−θ, we adopt the
strictly adjoint operator RT

θ .

3.4 Fiber based GAC
Figure 3 shows an example of a fiber of camera poses

which have the same translation t = [tx, ty]T , which
applies a visual validation of our fiber based GAC
model. Given a fiber Ft, the non-uniform blur caused
by the camera motion along Ft can be formulated as

Ktx =
∑
θj∈Ft

wθjKθj ,rKθj,tx

=
∑
θj∈Ft

wθjRθz,j (Kθj,tx)

= IPT (wt ⊗ PT (Kθtx))

(18)

where θt = [0, tx, ty]T , Kθtx denotes the in-plane
translation operation, PT (·) and IPT (·) stand for the
polar transform and inverse polar transform [40], re-
spectively. In the polar transform, we use the same
interval to discretize angular and roll angles, and thus
the basis filter wt can be defined as,

wt = [wt,θ1 , wt,θ1 , · · · , wt,θnz ] (19)
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Figure 3 Simulated blurry images obtained using fiber GAC
model Eq. (20) and using the 3D camera pose subspace
model in [29]. (a) fiber, (b) sharp image, (c) blurry image
based on the model in [29], and (d) blurry image based on
fiber GAC model.

where θ1 is the minimal roll angle and θnz is the max-
imal roll angle.

We compare the model in Eq. (18) with the 3D cam-
era pose subspace model in [29] for the simulation of
blur caused by camera shake along a fiber. Figure 3
shows the blurry images obtained by using these two
methods. One can easily see that the difference be-
tween Figs. 3(c) and Figs. 3(d) is insignificant, which
demonstrates that the model in Eq. (18) can be used
for modeling camera shaken image with a series of roll
rotations.

For a general camera motion trajectory P, we first
classify the poses in P into a number of non-intersected
fibers with P = ∪t{Ft}, and then the non-uniform
blur in Eq. (14) can be equivalently reformulated as

Kx =
∑

t
Ktx =

∑
t
IPT (wt ⊗ PT (Kθtx)) (20)

It is obvious that this is a GAC model with ft(x) =
IPT (x) and gt(x) = PT (Kθtx). If the range of the in-
plane translations is discretized into nx×ny intervals,
then the number C in fiber GAC should be not higher
than nxny.

We can then define the adjoint operator KTy as

KTy =
∑

t
K−θt

(
PTT

(
w̃t ⊗ IPTT (x)

))
(21)

where w̃t is the adjoint operator of wt, PT
T and

IPTT are the adjoint operators of PT and IPT , re-
spectively. To enhance the computational efficiency, t-
wo extra LUTs are pre-computed to record the cor-

respondence of polar and inverse polar transform, re-
spectively. Moreover, we use the strict adjoint opera-
tors of PT and IPT , i.e., PTT and IPTT , to avoid
the inconsistence caused by discretization and inter-
polation.

3.5 Hybrid GAC for Modeling
For GAC, the key to save computational cost is to

reduce C, the number of basis filters. Given a general
camera motion trajectory as shown in Fig. 4, neither
pure slice-based nor pure fiber-based GAC can guaran-
tee sufficiently small value of C. However, in a hybrid
(slice and fiber mixed) decomposition, only 2 slices and
2 fibers are required to model the camera motion tra-
jectory, so that the computational complexity is signif-
icantly reduced. Thus, we propose a greedy method to
decompose a camera motion trajectory into a hybrid
set of slices and fibers to reduce the C value.

Given the pose subset P and the 3D weight ma-
trix W with W (θz, tx, ty) the weight of the pose θ =
(θz, tx, ty), in each iteration, the proposed method first
finds a candidate slice Sθ̂z and a candidate fiber Ft̂x,t̂y ,
compare their relative contributions, and then choose
the slice or fiber with higher weights. By this way, we
can obtain a slice set {(θj ,Sj ,kj) : j = 1, ..., ns} and a
fiber set {(ti,Fi,wj) : i = 1, ..., nf}. As shown in Fig.
4, the proposed greedy algorithm can successfully de-
compose the camera motion trajectory into 2 slices
and 2 fibers. The detailed algorithm is summarized in
Algorithm 1.

Based on the slice set and the fiber set, the non-
uniform caused by camera shake can be reformulated
as:

Kx =
∑nf

i=1
IPT

(
wi ⊗ PT (Kθti

x)
)

+
∑ns

j=1
Rθj (kj ⊗ x)

(22)

The adjoint operator KTy is then defined as,

KTy =
∑nf

i=1
K−θtPT

T
(
w̃i ⊗ IPTT (y)

)
+
∑ns

j=1
k̃j ⊗RT

θj (y)
(23)

3.6 Discussions
With FFT, the computational complexity of the model
in Eq. (22) is O((ns + nf )n2 log2 n). If ns and nf are
small, GAC would be more efficient than the other
methods. Let nz be the number of intervals for the roll
angle. It is reasonable to assume that (ns + nf ) < nz,
otherwise, we can use the pure slice-based GAC model.

To further improve the computational efficiency, the
LUT method can be adopted for fast image rotation,
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Figure 4 Decomposing a camera motion trajectory into a slice set and a fiber set.

Algorithm 1 Greedy algorithm for hybrid GAC
Input: P and W
Output: The fiber set

{
(ti,Fi,wj) : i = 1, ..., nf

}
and the slice

set {(θj ,Sj ,kj) : j = 1, ..., ns}.

1: WS(θz) =
∑
tx,ty

W (θz , tx, ty), e = e0 =
∑
θz

WS(θz),

WF (tx, ty) =
∑
θz

W (θz , tx, ty), ns = 0, nf = 0, ε, 0 < α,
null fiber set and null slice set.

2: while e/e0 > ε do
3: (t̂x, t̂y) = arg max

tx,ty
WF (tx, ty) and wf = WF (t̂x, t̂y).

4: θ̂z = argmax
θz

WS(θz), ws = WS(θ̂z).

5: Update the slice set: If ws ≥ αwf , add the θ̂zth slice

to the slice set, and modify WS(θ̂z) = 0, WF (tx, ty) =

WF (tx, ty)−W (θ̂z , tx, ty), and ns = ns + 1.

6: Update the fiber set: If ws < αwf , add the (t̂x, t̂y)th

fiber to the fiber set, modify WF (t̂x, t̂y) = 0, WS(θ̂z) =

WS(θ̂z)−W (θ̂z , tx, ty), and nf = nf + 1.
7: Update e =

∑
θz

WS(θz).
8: k ← k + 1
9: end while

polar and inverse polar transform, and nz + 2 LUT-

s should be pre-computed and stored in memory. In

[29, 32], a sparse n2 × n2 matrix was constructed for

each pose in the 3D camera pose subspace. Compared

with the model in [29, 32], GAC can achieve much bet-

ter tradeoff between memory and computational com-

plexity.

In [31], camera shake is approximated as the sum of

R2 uniformly blurry patches, and the computation-

al complexity of the model in [31] is O(R2(n/R +

w)2 log2(n/R+w)), where w×w is the size of the blur

kernel. Compared with [31], when R and w are high-

er, GAC would be computationally more efficient, and

our experimental results also validates the efficiency of

GAC against the model by Hirsch et al. [31]. Moreover,

the model in [31] is a locally uniform approximation

of the camera shake model, while GAC can be strictly

equivalent with the geometric model in [29].

4 GAC-based Non-uniform Deblurring
In this section, by incorporating the proposed GAC
forward blur model into existing deblurring model, the
GAC-based non-uniform deblurring can be efficient-
ly solved. Then, by imposing l2,1-norm regularizer on
pose weight matrix W , the slice GAC deblurring can
approach toward uniform blind deconvolution.

4.1 GAC-based deblurring via GAPG
In typical non-uniform deblurring methods, TV regu-
larizer on latent image and l2-norm regularizer on pose
weight matrix are imposed, yielding the deblurring for-
mulation,

min
W ,x

∥∥∥∥∥∑
θ∈P

wθKθx− b

∥∥∥∥∥
2

+ λTV(x) + τ‖W ‖2 (24)

where λ and τ are trade-off parameters. By substi-
tuting the forward blur model with any GAC model,
we come to the GAC-based non-uniform deblurring
method, which can be solved by alternatively updat-
ing pose weight matrix W and latent clear image x.
By fixing x, we use the method in [32] to update W ,
while by fixing W , we develop an efficient solution to
x based on GAPG algorithm.

In [33], GAPG was developed to solve uniform non-
blind deblurring, where the Lipschitz constant is gen-
eralized to diagonal matrix that can guarantee faster
convergence rate. By introducing two auxiliary vari-
ables dh and dv, we reformulate the TV based model
into the following equivalent problem,

min
x,dh,dv

1

2
( µ ‖Kx− b‖2 + ‖dv −Dvx‖2

+ ‖dh −Dhx‖2 ) + λµ‖(dv dh)‖TV
(25)

where µ is the relaxation parameter, Dh and Dv are
the horizontal and vertical gradient operators, respec-
tively. According to [33], in each iteration, several sub-
problems should be solved for the updating of x, dh
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and dv, respectively. We use the same method as [33]
for updating dh and dv, and choose the proper Lip-
schitz matrix for updating x. For the updating of x,
the subproblem is formulated as

min
x

λmax

2
‖ x− { yx − λ−1max [ KT (Kyx − b)

+DT
v (Dvyx − ydv )

+DT
h (Dhyx − ydh) ] } ‖

(26)

where yx,ydv ,ydh have the same definition as in [33].
Here KT (Kyx − b) is computed based on Eq. 22 and
Eq. 23. In [33], λmax is set based on the inequali-

ty λmax ≤
(√
µ‖K‖2 +

√
η‖Dh‖2 +

√
η‖Dv‖2

)2
with

η = 1, ‖Dh‖2 ≤ 2, and ‖Dv‖2 ≤ 2 [33]. The diagonal
Lipschitz matrix is

Lf = diag(λmaxI, ηI, ηI) (27)

By using smaller λmax and η, GAPG algorithm will
converge faster. For non-uniform blur, we choose
‖K‖2 = 1 based on the following proposition.

Proposition 2

‖K‖2 ≤ 1

Proof In matrix analysis, we have

‖K‖2 ≤
√
‖K‖1‖K‖∞

where ‖·‖1 and ‖·‖∞ denote the largest l1-norm of
the columns and rows, respectively. For the unifor-
m blur procedure b = Kx, where each row of K is
a shifted version of blur kernel k, Zuo and Lin had
proved that the l1-norm of the row of matrix K cor-
responding to the (i, j)-th entry of b is ||k||1 [33].
For the non-uniform blur matrix K, (i, j)-th entry
of b has its own blur kernel k(i,j), and consequently
||K||∞ = max(i,j)||k(i,j)||1. By the non-negative con-
straint ki ≥ 0,∀i and the normalization constrain-
t
∑
i ki = 1, l1-norm of any blur kernel is 1, i.e.,

||k(i,j)||1 = 1. Thus, we have ||K||∞ = 1. Similarly,
||K||1 = 1 can be derivated from [33]. Thus, the in-
equality is proved.

The updating of subproblems should be performed
several iterations. With the properly chosen Lipschitz
matrix, each variable has it own Lipschitz constant,
rather than the largest one adopted in APG algorith-
m, so that the GAPG-based deblurring method has a
faster convergence rate.

4.2 Connection with uniform blind deconvolution

We impose group sparsity, i.e., l2,1-norm, on weight
matrix W along roll angle dimension to connect GAC-
based non-uniform deblurring and uniform blind de-
convolution,

min
W ,x

∥∥∥∥∥∑
θ∈P

wθKθx− b

∥∥∥∥∥
2

+ λTV(x) +
∑
θj

τθj‖Wθj‖
2 (28)

where τθj is the trade-off parameter controlling the
weight of all slices with angle θj , and by setting τθj=0 <
τθi ,∀i > j, the slices with larger rotation angle will be
gradually inactivated, and naturally the non-uniform
deblurring will approach toward uniform blind decon-
volution.

To solve the this problem, we also adopt the alter-
native minimization strategy, where the updating of
latent clear image shares the same solution via GAPG
as Section 4.1. Due to the non-smoothness of l2,1-norm
regularizer, we propose an effective solution to solve it.
By introducing auxiliary variableW ′, the problem can
be reformulated as,

min
W ,W ′

∥∥∥∥∥∑
θ∈P

wθKθx−b

∥∥∥∥∥
2

+
∑
θj

τθj‖W
′
θj‖

2+
δ

2
‖W−W ′‖2 (29)

where δ is positive penalty parameter. For the W -
subproblem, it is also a linear least square problem,
which can be efficiently solved [32], and for the W ′-
subproblem, it is a standard l2,1-norm optimization
problem, which can be solved by group shrinkage op-
erator [41].

The slice GAC with group sparsity provides a natu-
ral connection of non-uniform deblurring and uniform
deconvolution. When there are only camera in-plane
translations, i.e., no roll rotation, the camera shaken
blur will be uniform, and the slice GAC can play like
the traditional uniform blind deconvolution method.
Otherwise, roll rotations will cause the non-uniform
blur, where slice GAC can play like non-uniform de-
blurring method.

Fig. 5 shows an deblurring example of the standard
slice GAC (S-GAC) and slice GAC with group sparsity
(GS-GAC) on a real camera shake blurred image. From
the distribution of pose weights shown as Fig. 5(d),
the group sparsity constrains the slices gathering at
small rotation angles, where especially slices with angle
0 dominate, while in slice GAC the activated poses
are more randomly distributed. Thus, for the blurry
image with slight roll rotation shown as Fig. 5(a), GS-
GAC performs much better than S-GAC, significantly
suffering less artifacts.



Deng et al. Page 10 of 15

(a) Original image (b) S-GAC (c) GS-GAC
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Figure 5 Comparison of standard S-GAC and GS-GAC. (a) Original camera shake blurred image (b) Deblurring result by standard
S-GAC method (c)Deblurring result by GS-GAC (d) Distribution of slice angles where the weights with the same rotation angle are
summated.
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Figure 6 The results of different GAC models on three real camera shaken image. For the close-ups, from top to bottom rows are
the input real camera shake blurred images, deblurring results by F-GAC, deblurring results by S-GAC, deblurring results by H-GAC.

Table 1 Running time (s) and Peak memory usage (GB) of different GAC models.

Image ID Image Size
Time Memory

F-GAC S-GAC H-GAC F-GAC S-GAC H-GAC

Books 512× 768 947 698 543 1.71 1.75 1.60

Butcher Shop 401× 601 486 403 351 0.95 0.97 0.97

Statue 710× 523 979 694 664 1.39 1.49 1.51

5 Experimental Results
In this section, we evaluate the performance of pro-
posed GAC deblurring methods. First, three GAC

variants, i.e., slice based GAC (S-GAC), fiber based

GAC (F-GAC) and hybrid GAC (H-GAC), are com-
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pared in terms of computational time, memory usage
and visual quality. Due to its superiority over S-GAC
and F-GAC, H-GAC is then compared with the state-
of-the-art geometric methods, i.e., Whyte et al. [28],
Gupta et al. [29], and Hu et al. [32], and the state-of-
the-art EFF-based methods, i.e., Hirsch et al. [31] and
Xu et al. [16]. Finally, in the comparison with the state-
of-the-art uniform deblurring methods [7, 9, 18, 21],
slice GAC with group sparsity (GS-GAC) is adopted.
All the experiments are conducted on a PC with Intel
Core i5-2400 3.10 GHz CPU and 16G RAM memory,
and the proposed method is implemented in Matlab.

5.1 Comparison of three GAC variants
On three real world camera shaken images shown as
Fig. 8, three GAC variants are evaluated in terms of
running time and memory usage. As shown in Ta-
ble 1, the three GAC methods have comparable peak
memory cost to each other, while in terms of running
time, H-GAC is more efficient than both S-GAC and
F-GAC, since the set of slices and fibers decomposed
by H-GAC is usually more compact, thus having lower
computational complexity.

From the restoration quality shown as Fig. 6, H-GAC
and S-GAC perform better than F-GAC in recovering
more details and achieving more visual plausible de-
blurring quality. Due to its superiority over both S-
GAC and F-GAC, H-GAC is adopted in the following
comparison with non-uniform deblurring methods.

5.2 Comparison with geometrical methods
We use five real world camera shaken images, shown in
the top row of Fig. 7, to compare GAC with three ge-
ometrical methods, i.e., Whyte et al. [28], Gupta et al.
[29], and Hu et al. [32], where their deblurring result-
s are obtained by running source codes or executable
programs provided by authors. Although GAC costs
more memory than Whyte et al. [28] shown as Table
2, it is at least 100× faster, and in terms of deblurring
quality shown as Fig. 7, GAC performs much better
than Whyte et al. [28] in achieving more clear and
plausible texture details. At the same time, Gupta et
al. [29], Hu and Yang [32] and the proposed GAC mod-
el actually adopt the same 3D subspace to approximate
the full 6D camera pose space, and consequently can
obtain the similar deblurring results. Thus, it is more
critical to evaluate their performance in terms of com-
putational efficiency and memory usage. Tables 2 and
3 show that, GAC not only is at least 2.5x faster, but
also significantly relax memory burden than Gupta et
al. [29], Hu and Yang [32].

5.3 Comparison with non-geometrical methods
We further compare GAC with three non-geometrical

methods proposed by Harmeling et al. [42], Hirsch et

al. [31] and Xu et al. [16]. Since neither source code
or executable program of Harmeling et al. [42] and
Hirsch et al. [31] is available, we collected the deblur-
ring results from their papers or websites. The non-
geometrical methods greatly rely on the reasonability
of region division, and often sacrifice image details to
smooth out possible artifacts at region boundaries. As
shown in Fig. 9(a) and Fig. 9(b), GAC can achieve
more visually plausible deblurring results, while the
results by Harmeling et al. [42] and Hirsch et al. [31]
are visually over-smoothed. Xu et al. [16] provides an
executable program, so in Table 4 we report the CPU
running time and memory usage comparison with X-
u et al. [16] on several camera shaken blurry images
shown in Fig. 8, from which one can see that GAC also
performs better than Xu et al. As for deblurring qual-
ity shown as Fig. 9(c), GAC can obtain comparable if
not superior deblurring result than Xu et al. [16]

5.4 Comparison with uniform deblurring methods
In the comparison experiments with the state-of-the-
art uniform deblurring methods, i.e., Shan et al. [9],
Fergus et al. [7], Cho et al. [18] and Xu et al. [21], we
adopt GS-GAC, which performs better in handling s-
patially invariant blurry images. In Fig. 10, the first
image is of non-uniform blur with slight roll rotations,
from which one can see that GAC can achieve more vi-
sually plausible deblurring results, such as the statue’s
face is recovered more clearly, while the uniform de-
blurring methods usually suffer from ringing artifacts.
Then, on two spatially invariant blurred images, GAC
can also achieve satisfactory deblurring results, since
the imposed group sparsity enforces the GAC method
to play like uniform deblurring method.

6 Conclusions
In this paper, by designing generalized additive convo-
lution (GAC) model to geometrically represent camera
shaken blur, non-uniform deblurring is efficiently ad-
dressed. Since the slices and fibers decomposed from
the camera motion trajectory can be formulated as
convolution, all the GAC methods can exploit FFT
for efficient optimization. Compared with the meth-
ods in [29, 32], the proposed method only needs sev-
eral FFTs and to store several basis convolution k-
ernels and look-up-tables in memory. By incorporat-
ing group sparsity into pose weight matrix, the GAC-
based deblurring methods can also work like uniform
blind deconvolution, better handling uniform blurry
images. Compared with non-uniform deblurring meth-
ods, GAC method has a much lower peak memory us-
age, and is much more efficient. Compared with unifor-
m deblurring methods, GAC method also can achieve
satisfactory deblurring results.



Deng et al. Page 12 of 15

 

 

 

   

   

   

   

   

 

Figure 7: Visual comparison of hybrid GAC model with three geometrical methods. 

From top row to bottom row: blurred images in Figure \ref{geo comp results}, close-

ups of blurred images, deblurred results of Whyte et al., deblurred results of Gupta et 

al., deblurred results of Hu et al. 

(a) Cabin

 

 

 

   

   

   

   

   
 

Figure 7: Visual comparison of hybrid GAC model with three geometrical methods. 

From top row to bottom row: blurred images in Figure \ref{geo comp results}, close-

ups of blurred images, deblurred results of Whyte et al., deblurred results of Gupta et 

al., deblurred results of Hu et al. 

(b) Car-in-yard

 

 

 

   

   

   

   

   
(c) 

Figure 7: Visual comparison of hybrid GAC model with three geometrical methods. 

From top row to bottom row: blurred images in Figure \ref{geo comp results}, close-

ups of blurred images, deblurred results of Whyte et al., deblurred results of Gupta et 

al., deblurred results of Hu et al. 

(c) Dim-Petrol-Station

 

 

 

   

   

   

   

   
Figure 7: Visual comparison of hybrid GAC model with three geometrical methods. 

From top row to bottom row: blurred images in Figure \ref{geo comp results}, close-

ups of blurred images, deblurred results of Whyte et al., deblurred results of Gupta et 

al., deblurred results of Hu et al. 

(d) Petrol-Station
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(e) Six-Books

Figure 7 Visual comparison of GAC model with three geometrical methods on five images. From top to bottom rows: blurry
images, close-ups of blurry images, deblurring results of Whyte et al. [28], Gupta et al. [29], Hu and Yang [32], and GAC, respectively.

Table 2 Running time (s) of the four geometrical methods.

Image ID Image Size Whyte et al. Gupta et al. Hu & Yang GAC

Cabin 512× 768 98872 7789 2113 514

Car-in-yard 512× 768 87527 8829 7495 531

Dim-Petrol-Station 512× 768 88767 8512 2512 596

Petrol-Station 406× 679 89673 7982 1402 308

Six-Books 512× 768 96732 7356 2601 572

Table 3 Peak memory usage (GB) of the four geometrical methods.

Image ID Image Size Whyte et al. Gupta et al. Hu & Yang GAC

Cabin 512× 768 1.00 14.00 10.06 2.06

Car-in-yard 512× 768 0.98 14.04 10.20 1.93

Dim-Petrol-Station 512× 768 0.91 13.98 10.20 1.03

Petrol-Station 406× 679 0.92 14.01 8.25 1.44

Six-Books 512× 768 0.91 14.05 11.4 1.95

(a) Coke (b) Butcher shop (c) Books (d) Pantheon

 

(e) Elephant (f) Statue (g) Boy

Figure 8 Set of real camera shake blurred images for comparing with non-geometrical methods
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