
DUAL RECURSIVE NETWORK FOR FAST IMAGE DERAINING

Linwen Cai1, Si-Yao Li3, Dongwei Ren*2 , Ping Wang1

1School of Mathematics, Tianjin University, Tianjin, China
2College of Intelligence and Computing, Tianjin University, Tianjin, China

3SenseTime Research, Beijing, China

ABSTRACT
Recent years have witnessed the great progress on deep im-
age deraining networks. On the one hand, deraining perfor-
mance has been significantly improved by designing complex
network architectures, yielding high computational cost. On
the other hand, several lightweight networks try to improve
computational efficiency, but at the cost of notable degrad-
ing deraining performance. In this paper, we propose a dual
recursive network (DRN) for fast image deraining as well as
comparable or superior deraining performance compared with
state-of-the-art approaches. Specifically, our DRN utilizes a
residual network (ResNet) with only 2 residual blocks (Res-
Block), which is recursively unfolded to remove rain streaks
in multiple stages. Meanwhile, the 2 ResBlocks can be re-
cursively computed in one stage, forming the dual recursive
network. Experimental results show that DRN is very compu-
tationally efficient and can achieve favorable deraining result-
s on both synthetic and real rainy images. The source codes
and pre-trained models are available at https://github.
com/csdwren/DRN.

Index Terms— Image deraining, deep learning, recursive
computation

1. INTRODUCTION

Rain is a common weather condition, and rain streaks can
severaly damage the image quality when taking outdoor sce-
narios. Removing rain streaks not only enhances the visually
perceptual quality of images, but also benefits various high
level vision tasks [1, 2], such as object detection and image
recognition. Thus, it has received considerable research atten-
tion to improve deraining performance in recent years [2–9].
Meanwhile, when applying on mobile imaging devices, it is
also a valuable research topic to reduce model size and en-
hance the computational efficiency [2, 9].

With the great progress of deep learning in image pro-
cessing tasks [10–14], e.g., image denoising and superresolu-
tion, deep learning-based image deraining methods have also
been developed and achieved better performance than con-
ventional optimization-based deraining methods [1,4,15,16].
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Fig. 1. Dual Recursive Network at stage t. DRN only includes: 1
convolutional layer to receive the 6-channel concatenation of xt−1

and y, and output 16 channel features; 2 ResBlocks with 16 feature
channels; 1 convolutional layer receives 16 channel features and out-
puts 3 channel image that is added to y to generate deraining result.
The 2 ResBlocks are repeated R times, and the overall network is
recursively unfolded T times. We note that our DRN recursively
reuses these 2 convolutional layers and 2 ResBlocks, leading to a
very smaller network size.

Given a rainy image y, it is an ill-posed problem to seperate
clean background image x and rain streak layer r. Instead
of designing degradation models and regularizations, deep
learning-based image deraining methods try to learn the com-
position patterns of clean background images and rain layers
from sufficient training data.

On the one hand, more research attentions have been paid
on designing network architectures for better deraining qual-
ity. At first, Fu et al. [5] propose to decompose a rainy image
into a base structure layer and a high frequency detail lay-
er, and then utilize a 3-layer convolutional neural network
(CNN) to extract rain streaks from the high-frequency de-
tail layer. Subsequently, Fu et al. [6] employ a deep resid-
ual network (ResNet) [17] to substitute CNN for better ex-
tracting rain streaks from detail layers. In [7], Yang et al.
design a complex CNN architecture to jointly detect and re-
move rain streaks, in which dilation filters [18] are utilized
to take advantage of larger receptive field. In [8], squeeze-
and-excitation blocks and dilation CNN are incorporated into
recurrent network to remove rain streaks gradually. Recent-
ly, rain densities are jointly estimated to facilitate removing
rain streaks [19] . The deraining performance is signifantly
improved by these networks, but are facing higher computa-
tional cost due to complex network architectures with more
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network parameters.
On the other hand, to meet the requirements of mobile de-

vices, there are two lightweight deraining networks trying to
reduce the computational cost. In [9], the authors propose a
residual guidance network with dense connection to reduce
network size. In [2], a Laplacian pyramid framework is u-
tilized, in which deraining is tackled in multiple image res-
olutions, and the network size is further reduced. However,
these lightweight deraining networks are at the cost of no-
table deraining performance degradation than state-of-the-art
methods [7].

In this paper, we propose a dual recursive network (DRN)
for fast image deraining, which can achieve superior or com-
parable deraining performance compared with state-of-the-art
methods but significantly reduce network parameters. Specif-
ically, the proposed DRN utilizes a ResNet with only 2 resid-
ual blocks (ResBlock). The ResNet can be recursively unfold-
ed to gradually remove rain streaks in multiple stages. To fur-
ther strengthen the model capability, recursive computation is
also employed in each stage. In particular, the 2 ResBlocks
can be repeatedly unfolded several times. The network pa-
rameters of DRN is significantly less than state-of-the-art de-
raining networks [6–8], and is comparable with lightweight
networks [2, 9].

The experimental results on synthetic datasets validate
that our DRN can achieve superior and comparable derain-
ing results than state-of-the-art methods [6, 7], and performs
much better than lightweight networks [2, 9]. Our pre-trained
DRN can also be well generallized to real-world rainy images
to generate visually favorable deraining results.

2. THE PROPOSED METHOD

2.1. Motivation

With the powerful modeling capacity of deep CNN, image de-
raining performance has been significantly improved by deep-
er and complex networks. And to further enhance the de-
raining ability, there are some attempts to recurrently reuse
deraining networks [7, 20], in which deraining results are re-
cursively fed to deraining network to progressively remove
rain streaks. However, the base deraining network is with
complex architecture and more parameters. Motivated by the
recursive unfolding strategy, we in this paper propose to re-
peatly unfold a simple ResNet to reduce network parameters.
Furthermore, we propose to further take advantage of recur-
sive computation in each stage, i.e., recursively computing
the intermediate ResBlocks several times, forming the Dual
Recursive Network (DRN).

The proposed DRN has three advantages: (i) DRN has
very smaller network size than state-of-the-art deraining net-
works [6–8]. (ii) The recursive computation of simple ResNet
is also very computationally efficient. (iii) DRN performs
much better than the existing lightweight deraining network-

s [2, 9], and is comparable or superior than state-of-the art
deraining networks [6, 7].

2.2. Network architecture

As shown in Fig. 1, our DRN only consists of 2 convolutional
layers and 2 ResBlocks, i.e., 1 convolutional layer fin to re-
ceive input, 2 ResBlocks with recursive computation frecursive
to extract features and 1 convolutional layer fout to output
clean images. These parameters are shared across multiple
stages. Following [6, 7, 9], we also employ the residual learn-
ing. Thus the inference of DRN at stage t can be formulated
as

xt = y + fout(frecursive(fin(xt−1,y))). (1)

The maximum stage number is T . All the convolutional lay-
ers have 3 × 3 kernel with 1 × 1 padding. In the following,
we give the implementation details of each layer.

Input layer: Given a 3-channel RGB rainy image y, the
network takes the concatenation of 3-channel RGB rainy im-
age y and 3-channel RGB deraining result xt−1 as input. E-
specially, x0 is set as y. The convolution layer outputs 16-
channel features, and is followed by ReLU.

Recursive ResBlock: Then, the features are fed to 2 Res-
Blocks. Instead of one forward pass, these 2 ResBlocks can
be recursively computed R times. Following [17], each Res-
Block has 2 convolutional layers followed by ReLU. And to
make the dimension consistent in recursive computation, both
the input and output of ResBlock have 16 channels.

Output layer: The output layer only contains one convo-
lutional layer without activation. It takes 16 channel features
from ResBlock as input, and outputs 3-channel image, which
is added to y to generate the final deraining result.

2.3. Training

For DRN with T stages, we have T outputs, i.e., x1, x2,...,
xT . Due to the intra-stage recursive computation, it is hard
to train DRN by only imposing the supervision on the final
output xT . Therefore, we propose to impose the supervision
loss function on output of each stage, i.e.,

L = ΣT
t=1λt`

(
xt,xGT

)
, (2)

where λt is the positive trade-off parameter, xGT is the
ground-truth background image, and `

(
xt,xGT

)
measures

the loss values between xt and xGT .
As for the choice of loss function `

(
xt,xGT

)
, several

hybrid loss combinations are suggested in image deraining
methods [2, 7–9]. However, in this paper we suggest that the
negative SSIM loss [21] function is sufficient to train DRN
for image deraining, i.e.,

`
(
xt,xGT

)
= −SSIM

(
xt,xGT

)
. (3)



Table 1. Average PSNR/SSIM comparison on synthetic datasets, including Rain100H [7], Rain100L [7] and Rain12 [16]. Red
and blue colors are used to indicate top 1st and 2nd rank, respectively.

GMM [16] DDN [6] JORDER [7] ResGuideNet [9] LPNet [2] DRN
Rain100H 15.05/0.425 21.92/0.764 26.54/0.835 25.25/0.841 23.73/0.810 26.99/0.861
Rain100L 28.66/0.865 32.16/0.936 36.61/0.974 33.16/0.963 34.26/0.950 35.74/0.970

Rain12 32.02/0.855 31.78/0.900 33.92/0.953 29.45/0.938 35.35/0.950 36.15/0.960
#. Parameters —— 57,369 369,792 37,065 7,548 10,595

3. EXPERIMENTAL RESULTS

In this section, the proposed DRN is evaluated on three syn-
thetic datasets and real rainy images. In comparison experi-
ments, DRN is implemented with T = 7 and R = 7. As for
the trade-off parameters in loss function (2), we set λ1 = 0.1,
λ2 = 0.2, λ3 = 0.3, λ4 = 0.4, λ5 = 0.5, λ6 = 0.6
and λ7 = 1.7, since the latter outputs should be paid more
strength. DRN is implemented using Pytorch and is trained
on a PC equipped with two NVIDIA GTX 1080Ti GPUs. We
train all the models using ADAM [22] with batch size fixed
as 16. The learning rate is set as 1 × 10−3, and when reach-
ing 30, 50 and 80 epoches, the learning rate is decayed by
multiplying 0.5. The training ends after 100 epoches.

3.1. Evaluation on synthetic datasets

The DRN network is evaluated on three datasets, i.e., Rain100H
[7], Rain100L [7] and Rain12 [16], and is compared with
5 competing deraining approaches, including conventional
optimization-based method: GMM [16], two state-of-the-art
deep CNN-based models: DDN [6] and JORDER [7], and
two lightweight networks: LPNet [2] and ResGuideNet [9].
Following the experimental settings [2,7,9], DRN models for
Rain100H and Rain100L are trained, respectively. The model
on Rain100L is applied to process the images in Rain12.

Table 2. Comparison of running time (sec.)
Image size DDN [6] JORDER [7] DRN
500× 500 0.407 0.179 0.107

1024× 1024 0.754 0.815 0.381

Table 1 reports the quantitative comparison metrics along
with network parameters. Since the source codes of Res-
GuideNet [9] and LPNet [2] are not available, we directly
copy their reported metrics. Meanwhile, the deraining re-
sults by JORDER [7] are provided, based on which we can
compute average PSNR and SSIM, which are consistent with
those reported in ResGuideNet [9] and LPNet [2], confirming
these borrowed metrics of ResGuideNet and LPNet. From
the average PSNR and SSIM, our DRN performs better than
these lightweight networks, and is comparable with state-of-
the-art network JORDER. We should note that our DRN can
achieve higher quantative metrics on Rain12, although it is
a little inferior to JORDER on Rain100L. Since the training

dataset of Rain100L only has 200 rainy images, it is possible
that JORDER is overfitted to this dataset, while our DRN has
better generalization ability. The visual quality by DRN is
also favorable than the competing methods, as shown in Fig.
2.

In Table 2, we report the running time of these competing
networks, whose souce code or testing code are released.
The running time is recorded on a NVIDIA GTX 1080Ti
GPU. Our DRN has much fewer parameters than DDN and
JORDER, and is also more computationally efficient than
these methods.

3.2. Evaluation on real rainy images

On real rainy images, DRN is compared with DDN [6] and
JORDER [7]. As shown in Fig. 3, our DRN performs better
in removing rain streaks on the first rainy image, while both
the results by DDN and JORDER have visible rain streaks.
On the second image, both DRN and JORDER can remove
rain streaks clearly. But JORDER over-suppresses texture de-
tails (see the red and green close-ups). Our DRN can better
preserve texture details as well as effectively removing rain
streaks.

3.3. Effects of recursive numbers in DRN

There are many settings of T andR. We have conducted com-
prehensive ablation studies, and found that DRN models with
T = R perform better than other settings. Due to the limit-
ed space, we only discuss the selection of recursive numbers
with T = R. As in Table 3, we train four DRN models for
Rain100H [7] with T = 5, 6, 7, 8, respectively. It is reson-
able to see that both PSNR and SSIM increase along with the
recursive numbers, and the improvment becomes marginal.
From the visual quality in Fig. 4, all the DRN models can
achieve favorable deraining results. Considering the perfor-
mance improvement and computational cost, we suggest to
adopt DRN7,7 in practical applications.

Table 3. The effects of recursive numbers in DRN on
Rain100H [7]

.

DRN5,5 DRN6,6 DRN7,7 DRN8,8

PSNR 26.74 26.87 26.99 27.03
SSIM 0.859 0.861 0.861 0.864

Time (sec.) 0.044 0.062 0.079 0.103



Rainy image Ground-truth GMM [16] DDN [6] JORDER [7] DRN

Fig. 2. Visual quality comparison on Rain100H dataset.

Rainy image DDN [6] JORDER [7] DRN

Fig. 3. Visual quality comparison on real world rainy images.

Rainy image DRN5,5 DRN6,6 DRN7,7 DRN8,8

Fig. 4. Visual quality comparison of DRN with different recursive numbers.

4. CONCLUSION

In this paper, we proposed a dual recursive network for fast
image deraining. A 4-layer ResNet is recursively unfolded,
leading to small network size and satisfying deraining perfor-
mance. Experimental results have demonstrated that DRN
can achieve comparable or superior deraining results com-
pared with state-of-the-art deraining networks, and performs
much better than the existing lightweight deraining network-

s. The proposed dual recursive network can also be applied
to other image restoration tasks for balancing the restoration
quality and computational cost.
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