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Figure 1: Furniture synthesis with RoomEditor integrates reference objects into environments with

geometric coherence and visual fidelity. Moreover, RoomEditor exhibits remarkable generalization
capabilities across a wide range of unseen scenes and objects without task-specific fine-tuning

Abstract

Virtual furniture synthesis, a critical task in image composition, aims to seamlessly
integrate reference objects into indoor scenes while preserving geometric coherence
and visual realism. Despite its significant potential in home design applications,
this field remains underexplored due to two major challenges: the absence of
publicly available and ready-to-use benchmarks hinders reproducible research, and
existing image composition methods fail to meet the stringent fidelity requirements
for realistic furniture placement. To address these issues, we introduce RoomBench,
a ready-to-use benchmark dataset for virtual furniture synthesis, comprising 7,298
training pairs and 895 testing samples across 27 furniture categories. Then, we pro-
pose RoomEditor, a simple yet effective image composition method that employs
a parameter-sharing dual U-Net architecture, ensuring better feature consistency
by sharing weights between dual branches. Technical analysis reveals that conven-
tional dual-branch architectures generally suffer from inconsistent intermediate
features due to independent processing of reference and background images. In
contrast, RoomEditor enforces unified feature learning through shared parame-
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ters, thereby facilitating model optimization for robust geometric alignment and
maintaining visual consistency. Experiments show our RoomEditor is superior to
state-of-the-arts, while generalizing directly to diverse objects synthesis in unseen
scenes without task-specific fine-tuning. Our dataset and code are available at
https://github.com/stonecutter-2 1/roomeditor.

1 Introduction

Recent advances in augmented reality and computer vision have revolutionized virtual product
visualization for e-commerce applications, particularly in indoor scene synthesis. Within the rapidly
expanding home design market (expected to reach around 250 billion dollars in ten years [15]),
intelligent image synthesis systems have emerged as critical tools for consumer decision-making.
These systems enable in-situ furniture visualization by digitally integrating selected items into
user-provided room images as shown in[Figure T} offering significant potential to transform design
practices and retail experiences.

Despite progress in generic image composition, indoor furniture synthesis remains underdeveloped
due to two key limitations. The first lies in the limited availability of ready-to-use datasets with
realistic indoor environments, thereby hindering reproducible research. While Amazon’s dataset
[44] demonstrates the value of domain-specific data, its restricted access stifles community efforts.
InteriorNet [30], 3D-FUTURE [14]], and 3D-FRONT [13]] expose detailed 3D models, but constructing
reasonable reference—background pairs demands meticulous viewpoint selection and scene setup,
revealing challenges in data acquisition. Consequently, the field remains hampered by inadequate
benchmarks and persistent data scarcity. To address this issue, we introduce the RoomBench dataset,
a ready-to-use, publicly available benchmark tailored for virtual furniture synthesis. Our RoomBench
consists of 7,298 training pairs and 895 testing samples across 27 furniture categories, meticulously
curated from diverse online sources. Each sample includes high-quality annotations, enabling
comprehensive evaluation of geometric coherence and visual realism. This benchmark provides a
foundation for future research in indoor furniture synthesis by facilitating both training and evaluation.

The second critical challenge arises from technical limitations in current image composition meth-
ods [53} 16, [7]], which often fall short of the high visual fidelity required in practical home design
applications. Minor geometric misalignments or texture inconsistencies can break user immersion
and erode trust. Image encoder-based methods such as PBE [53]] and Anydoor [[6] use CLIP [3§]]
or DINO [3] to extract reference features and inject them into the U-Net. However, they tend to
overlook fine-grained structural details essential for complex furniture integration. Even advanced
dual U-Net architectures like MimicBrush [[7] struggle to ensure visual consistency and harmony
between the inserted object and the surrounding background, often resulting in unnatural compo-
sitions with obvious copy-paste artifacts. These limitations result in inconsistent appearances and
poses of furniture, thereby undermining practical utility. To address these limitations, we propose
RoomEditor, a parameter-sharing dual U-Net that enforces feature consistency via shared weights.
We perform an in-depth analysis of existing dual U-Net pipelines and identify feature misalignment
between the extraction and inpainting stages, which degrades synthesis quality. By unifying feature
extraction and inpainting within the same network, RoomEditor naturally aligns the two stages,
enabling complex spatial transformations and seamless object integration. Experiments demonstrate
that our method achieves superior objective and subjective results on RoomBench compared to
state-of-the-art methods.

Our RoomEditor not only excels in home design but also generalizes effectively to a broader range
of scenes and objects. As illustrated in[Figure 1| our RoomEditor can be directly applied to general
scenes and objects without any task-specific fine-tuning. The superior adaptability of RoomEditor
can be attributed to its unified feature learning in parameter-shared U-Net. The contributions of this
work are summarized as follows:

* We constructed a ready-to-use open-source benchmark RoomBench specifically for home
design, consisting of 7,298 furniture-background training pairs and 895 testing samples
across 27 categories with annotations.

* We propose a simple yet effective RoomEditor for high-fidelity furniture synthesis, whose
core is a parameter-sharing U-Net. In addition, we provide an in-depth analysis of existing


https://github.com/stonecutter-21/roomeditor

dual-branch approaches from the perspective of feature consistency, showing the potential
advantage of RoomEditor for high-fidelity and visual consistency.

* Extensive experiments validate that RoomEditor achieves superior performance in both
quantitative and qualitative evaluations as well as in human perception studies for home
design, while demonstrating remarkable generalization across diverse scenes and objects.

2 Related Work

2.1 Furniture Synthesis for Home Design

The most relevant research field to furniture synthesis is virtual try-on [18. 8128 [26] 50} 160], which
has primarily focused on fashion applications, emphasizing fabric textures, body pose estimation,
and occlusion handling. While several virtual try-on methods [26 50, [60] employ dual U-Net
architectures and must model garment—body interactions, their objectives and challenges differ from
those in furniture synthesis. In particular, furniture synthesis requires handling diverse and rigid object
shapes, whereas clothing in virtual try-on typically exhibits more consistent forms, leading to different
integration challenges. Meanwhile, the area of indoor scene synthesis specifically for furniture
placement remains relatively underexplored. A few studies [4, 49] have explored interior design
through text-to-image generation but provide limited control over individual furniture placement.
Diffuse-to-Choose [44] addresses furniture synthesis by incorporating reference features via a U-Net
encoder augmented with FiLM [37]] layers on a large-scale indoor dataset. However, its training and
testing sets are proprietary, limiting reproducibility and further research. To bridge these gaps, this
paper introduces RoomBench, a ready-to-use and open-source benchmark for furniture synthesis,
along with a method RoomEditor that ensures high-fidelity object preservation and context-aware
placement.

2.2 TImage Composition

Early image composition methods [23} 9] 145} 146} 47, |11} [10]] primarily focused on the task of image
harmonization, ensuring seamless integration of the foreground with the background. These methods
typically relied on manually designed pipelines. In contrast, text-to-image diffusion models [40,
39| [17, 142]] have enabled the automatic integration of specific objects into diverse contexts while
preserving their identity and attributes. By extracting pseudo-words, methods such as Textual
Inversion [16]] and DreamBooth [41], along with others [2}[19, 24, 25 31}, 133}, 12}, 29} 27|}, rely on fine-
tuning with textual prompts but often produce unstable backgrounds. Semantic image composition
methods, such as DreamPaint [43]], PBE [53]], CustomNet [54], and ControlCom [55]], which focus
on object insertion into predefined scenes, often struggle to preserve fine-grained details in complex
scenes when using CLIP [38] image encoder. Recent advancements, including AnyDoor [6], have
addressed some of these challenges by leveraging ControlNet [57] and DINO [35]] to improve
texture fidelity and reference-object consistency. In contrast, MimicBrush [7] employs a dual U-Net
architecture [S1} 156} 159} 15, 22} 152]], which has proven effective in capturing multi-scale reference
features, thereby enabling flexible image editing and generating high-fidelity syntheses. Despite
these improvements, achieving both high fidelity and seamless integration in home design remains a
significant challenge, particularly when the training dataset is insufficient.

3 Benchmark for Furniture Synthesis

In this section, we construct an open-source RoomBench for furniture synthesis, whose procedures
for data collection, filtering, and annotation are detailed as follows.

3.1 Data Collection and Filtering

To ensure the diversity in furniture types and scene contexts, we systematically collected about 4,500
furniture items, each of which has several product images and contextual scene backgrounds. Our
curation strategy included two key measures. Category Coverage: Hierarchical classification into 27
fine-grained categories, including bedroom essentials (e.g., Bed, Pillow), living room furnishings
(e.g., Sofa, Coffee Table), and bathroom fixtures (e.g., Shower, Bathtub). Image Quality Assurance:
We require a minimum resolution of 512 x 512 for both furniture images and background images.
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Figure 2: The architecture of our RoomEditor. Our method shares parameters between the two U -
Nets for unified feature space learning. As shown, reference features propagate independently, while
background features interact with reference features through a self - attention module at each layer,
ensuring effective feature alignment.

Subsequently, the collected data underwent rigorous filtering. Initially, we manually classified images
as either product images or background images. We then leveraged GPT-4o [[1]] to assist in data
filtering. Images were excluded if the furniture was not fully visible in the background image or if there
was an inconsistency between the furniture object or color in the reference and background images
(i.e., they did not depict the same object), resulting in 5,948 reference furniture images and 4,989
background images. Following this, the dataset was split into training and testing sets. The training
set comprises 5,288 reference furniture images and 4,094 background images, with each reference
image paired with one or two background images, resulting in a total of 7,298 furniture—background
pairs. The testing set contains 660 reference furniture images and 895 background images, resulting in
895 testing samples. For more detailed data-processing procedures and complete dataset information,

please refer to

3.2 Data Annotation

For each image pair in RoomBench, background image and reference image are annotated with
corresponding furniture masks. In the training set, these masks are hand-labeled precisely to ensure
high-quality annotations. This labeling process allows effective data augmentation, improving the
model’s generalization capabilities. For the testing set, we included more loosely annotated masks to
reflect the variability and potential inaccuracies in user-generated labels. This annotation strategy
allows us to evaluate the model’s robustness in real-world scenarios, where annotations are often
imperfect or inconsistent. With specific images and annotations, RoomBench is immediately ready-
to-use, eliminating the need for additional efforts in data acquisition that are typically required by
InteriorNet [30], 3D-FUTURE [14]], and 3D-FRONT [13].

4 RoomkEditor for Furniture Synthesis

In this section, we first introduce the RoomEditor architecture, whose core is a shared U-Net model
for background and reference images with unidirectional information flow. Then, we compare
our RoomEditor with existing methods from the perspective of feature consistency, showing the
underlying mechanism behind our RoomEditor.

4.1 RoomkEditor Architecture

I]W

Given a masked background image Ié\g and a masked reference image I,

integrate the object from I into the masked region of I}ﬁ;. Different from existing dual U-Net

methods (e.g., [7]), our approach utilizes a shared U-Net to synchronously extract reference image
features and perform inpainting. Specifically, as shown in[Figure 2] we employ an inpainting U-Net
€g(+) as basic model by following previous work [7]. First, we extract the features for Irjevf from the
mid- and upper-attention layers of the U-Net. For [-th self-attention layer, the extracted feature of

IM denoted as f;(IM), is computed as

ref >
KT
fi(IM) = softmax (Qfﬁf) Vi, (M)
k

our goal is to seamlessly

4



where Qrer = fiI—1 (I )Wo, Kt = fiii(Inf )Wk, Vier = fim1(IM )Wy, and Wg i vy are the
projection matrices in attention layer. f;_1(I) indicates the output of the (I-1)-th layer. It is worth
note that our RoomEditor actually takes the image, mask and noise as inputs, while we omit the mask
and noise in our formulation for simplicity.

Then, RoomEditor performs a unidirectional interaction to inject features of reference image
fl_l(IrJeV{ ) into those of masked background image Ilf\g/[ for inpainting. Particularly, the features

of Iég in [-th layer is computed by a mixture attention with inputs of f;_; (Ié‘g yand fi_1(IM), ie.,
Qug - Kppgrer) |

fl(Ié\g) = softmax (g\/degre] * Vibg,ref]» (2)

where Qn, = fi1(Ip))Wq, Kpgreg = cat(fica(L), in(LX))Wk, Viegreg =

cat( fl_l(Ilf‘g ), fi—1(IM))Wy, and cat indicates the concatenation operation. Besides, existing
dual U-Net methods [7,50] generally integrate reference features by using extra image encoders (e.g.,
CLIP [38]]). Due to similar functions are achieved by a mixture attention in Eqn. @), our RoomEditor

can omit extra image encoders to make our architecture more succinctly.

For optimizing our RoomEditor, we first construct masked background as Ié‘g = M, © I, by
giving ground-truth image Iy and a mask My,, and then sample random noise € and a timestep ¢ to
generate the noisy image I ;t. Finally, we minimize the following loss function, i.e.,
, 2
L=Fir,.|eo(Ty Iy e t) — €, 3)

where c denotes the features extracted from I

4.2 Discussion on Merit of RoomEditor

In this subsection, we compare with previous works [53| |6 [7] from the perspective of feature
consistency, and show the potential advantage of our RoomEditor architecture in the context of
high-fidelity furniture synthesis task.

4.2.1 Task Description

Since high-fidelity furniture synthesis aims to prominently place reference furniture I in the
background image I, it can be formulated as an ideal copy-paste problem. Specifically, the target
image I, can be represented as a composition of a masked background image My, © I, and a masked
reference image M.er © I With pose transformation R, i.e., Iy = Mpg © Ipg + R(Miet © Ief),
where ® indicates element-wise multiplication. Therefore, the key issue is learning the precise
transformation R, given a pair of background and reference images { Iy, Irer}. As R depends on the
spatial and visual relationship between I, and I, including factors such as mask geometry and
background illumination, the final objective can be formulated as

Iy = Mg © Ipg + R(Miet © et | Mg © Ig). )

To learn transformation R, diffusion model €y (-) is generally employed to achieve this implicitly by
training on abundant pairs of background and reference images { Iy, Irer} With masks { Mg, Mt}

Based on the empirical observation that inpainting models implicitly preserve unmasked regions
during training, we treat predictions in these areas as ground truth. Accordingly, we consider two
complementary cases: (1) masking the object region in Iy to obtain I})\g, where the background
prediction remains unchanged; and (2) masking the background region to retain only the object
(denoted as R(IM. | Illj\g)), where the object prediction remains unchanged. Combining these two

masked predictions yields an approximation of the target image:

eo(Iy) = €9 (Mg © Iog + My © R (IN; | Iy))

- (5)
~ My © €g (Ipy) + My © €9 (R (IN; | 1))

where I{)‘g and Irl\é[f represent My, © Ipe and Mt © Iier, respectively, and My, = 1 — M, denotes
the complement of the mask M.



Similarly, since the inpainting model’s output in non-masked regions remains essentially unchanged
regardless of input conditions, its impact at the feature level is marginal. Thus, for the [/-th layer, we

obtain L
fl(Igt) = fl (Mbg © Ibg + Mbg ® R (Ig\e/lf ‘ I]I)\g))
~ My © fi (INg) + Mg © fi (R (It | 1))

Furthermore, the diffusion model implicitly learns R by progressively transforming and fusing
features at each layer, rather than by directly transforming the original image. Thus, Eqn. (6) can be
rewritten as follows in practice:

fi(In) = Mg © fi (Ig) + Moy © Ry (fy (L) | fi (L3g)) - )
where R; denotes the transformation in feature space. Given that the first term is solely related to
the background, the differences among various methods 53| 6, [7] are primarily concentrated on the
second term. According to Eqn. (6) and Eqn. (3), better feature consistency between ground-truth
fi(Iy) and practice one (i.e., the right part of Eqn. (6)) will help to optimize the inpainting model

in Eqn. (5). The experimental verification of Eqn. () and Eqn. (6) is presented in

(6)

4.2.2 Comparison with Previous Works

From the perspective of feature consistency, we compare our RoomEditor with several previous
works [53] |6 [7]. Here we consider the [-th interaction layer and show how different methods
approximate f;(Iy). Encoder-based methods [53 [6] take advantage of a frozen image encoder
E(-) and a trainable linear projector L(-) to extract reference features, formulated as EL(If,\g) =
L(E(I}g)). Then, cross-attention is applied to inject the reference features L(E(I}})) € RT" %4 into
the background ones:

fi(Iy) = Cross-Attn(fi_1 (1)), EL(I}y)), 8)
where Cross-Attn(-, -) denotes cross-attention.
Dual U-Net methods (e.g., [[7]) employ a frozen U-Net g;_1 (-) to extract attention features at (I-1)

-th layer. These features are injected via mixture attention (which can be approximated as a blend of
self- and cross-attention), expressed as

ilTg) ~ Self-Attn( fi—1 () + Cross-Attn(fi— (IX), g1—1 (I2)), o

fz(IhJ;{ Appgre] (g1-1 (IN) - Wy
where Self-Attn(-, -) denotes self-attention and A{pg,ref] denotes attention score matrix. Compared to
Eqn. , these methods approximate Ry (fi(Iy;) | fi(Iy,)) through the operation A g ref (g:—1(Iy))-
Wy, while My, and My, are implicitly learned through the attention mechanism.

In contrast, our RoomEditor uses a single U-Net f;_1(+) to extract reference features which are
integrated through mixture attention:

FilTg) ~ Self-Atin( fi_1 (I))) + Cross-Attn( fi—1 (1)), fi—1(I}%). w0

f(Ih) Appgref] (f1-1(IN)- Wy
Compared to Eqn. , our method approximates R;(f;(IM) | fl(I,I)‘g)) using Ajppg e (f1—1(INf)) -
Wy,. Under this formulation, we assume R; corresponds to a cross-attention operation, which
applies a complex transformation to the reference features based on their similarity to the background
features. It is worth note that the optimal ¢;(-) may be not f;(-), but f;(-) is a natural choice for
offering the promising performance. Empirical comparisons in terms of loss visualizations and image
quality indicate that the shared U-Net outperforms both the frozen U-Net and the unshared one.

Empirical Validation. To further investigate the effect of feature consistency, we compare three
different methods on our RoomBench, i.e., frozen reference U-Net as in Mimicbrush [7], trainable
reference U-Net for reference images, and our RoomEditor with shared U-Net for background and
reference images. Specifically, we train all models on our RoomBench under the same exactly setting,

and compute ¢ loss between features from two separate inputs ( f;(I)) and those of the ground-truth
images, which are outputted by the intermediate layers of inpainting U-Net (f;(Iy)).
shows the results of different methods along with various layers and training epochs, where we can
observe (1) our RoomEditor with shared U-Net ( ) is consistently low in ¢5 loss across all
intermediate layers. Particularly, RoomEditor is significantly lower than other two methods at the
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Figure 3: /5 error values in different layers by three methods: our RoomEditor (green line), and two
non-shared dual U-Net methods with frozen (blue line) and trainable (red line) reference U-Net.

Method ‘ g;‘:; RoomBench|  FIDJ SSIMT PSNRT  LPIPS| CLIP} DINOT
PBE (53] 1.4M X 28.35 0.766 19.96 0.139 84.63 75.72
AnyDoor [6] 500K X 28.03 0.767 18.85 0.137 87.74 76.91
MimicBrush [7] | 400K X 22.50 0.784 19.41 0.111 88.21 79.11
PBE* 1.4M v 26.85 0.769 20.26 0.136 86.46 79.22
AnyDoor* 500K v 26.62 0.772 19.13 0.135 88.73 79.37
MimicBrush* 400K v 19.04 0.791 20.44 0.098 90.87 85.65
MimicBrush 0 v 21.12 0.785 20.39 0.106 89.48 83.26
RoomEditor (Ours)| 0 v 18.42 0.793 21.15 0.094 90.51 85.47

Table 1: Quantitative comparison on RoomBench. PBE, AnyDoor, and MimicBrush are evaluated
under three settings: (i) released models on large datasets, (i7) fine-tuned on RoomBench (marked
with x), and (iii) re-trained on RoomBench (marked with t). 1: data volume after filtering via SD [40].

early stages in terms of /5 loss. (2) The frozen (blue line) and trainable (red line) reference U-Net
only approximate the features of ground-truth images at the last stage under the strong constraint of
training loss. (3) The frozen reference U-Net has lower ¢5 loss than trainable one in the early stages,
indicating unshared U-Net is more difficult to optimize, due to large parameter space and limited
training data. The above comparisons show that our RoomEditor, using a shared U-Net, achieves
better feature consistency, leading to better performance (refer to experiments in [Table 4).

S Experiments

5.1 Experiment Setup

Implementation Details. Our RoomEditor is initialized with the Stable Diffusion 1.5 inpainting
model [40] and trained on the RoomBench dataset for 20k steps with a batch size of 32 across four
NVIDIA A6000 GPUs. We use the AdamW optimizer [32]] with a constant learning rate of 1 x 1075,
and set the input resolution to 512 x 512. To enhance robustness against imperfect mask inputs and
domain variations, we apply augmentation techniques to both masks and images. The augmented

masks are shown in |l 6

Objective Evaluation Metrics. To compare with other methods, we use SSIM [48]] and PSNR [21]]

for assessing reconstruction quality, FID and LPIPS for assessing perceptual realism,
CLIP-score [38] and DINO-score [33]] for assessing semantic consistency.

Human Evaluation Metrics. To complement objective metrics, we conducted a user study follow-
ing [7]], evaluating results in fidelity (retaining reference identity and details), harmony (seamless
integration with the background), and quality (overall visual appeal and detail).



Method Fidelity Fidelity Harmony Harmony Quality Quality

Best (%) Rank| Best (%) Rank| Best (%) Rank|
PBE* [53] 5.1 3.36 18.0 2.85 4.5 3.34
AnyDoor* [6] 8.9 2.96 7.6 3.16 3.5 3.20
MimicBrush* [7] 29.4 2.11 30.5 2.16 38.3 1.80
RoomEditor (Ours) 56.6 1.57 43.9 1.82 53.6 1.66

Table 2: User study results. In each trial, annotators were presented with four images (one from
each method) and asked to rank them with respect to fidelity, harmony, and overall quality. “Best (%)”
denotes the percentage of cases where a method was ranked first (i.e., perceived as the best under the
given criterion), while “Rank|” indicates the average ranking (lower is better) across all trials.

5.2 Evaluation on RoomBench

Our RoomEditor is compared with PBE [53]], Anydoor [6] and Mimicbrush [7]. These competing
methods are evaluated under three settings: the released models trained on their respective large
datasets, the fine-tuned models (denoted with x), whose released model weights are further fine-tuned
on our RoomBench, and the re-trained models (denoted with 1), whose model parameters are trained
by keeping the same configuration as our RoomEditor.

5.2.1 Quantitative Comparison

As shown in the released models of PBE, AnyDoor, and MimicBrush exhibit limited
performance for furniture synthesis despite being trained on large-scale datasets. Notably, the large-
scale datasets used for training AnyDoor and MimicBrush primarily consist of video data. The number
of training image pairs is estimated to be approximately four times the number of videos, significantly
exceeding the scale of our RoomBench dataset. This highlights the necessity of establishing a
specific dataset tailored for home design. Fine-tuning on our RoomBench significantly improves the
performance of AnyDoor* and MimicBrush* across all metrics. In particular, MimicBrush* achieves
the highest CLIP-score and DINO-score.

From a technical standpoint, our RoomEditor, which is trained solely on RoomBench, outperforms
competing methods in most quantitative metrics. Specifically, the state-of-the-art MimicBrush?
is notably inferior to both MimicBrush* and our RoomEditor, demonstrating that our proposed
parameter-sharing U-Net architecture is a more effective solution for image composition, especially
when large-scale pre-training datasets are not available.

5.2.2 User Study

Following the protocol in [7], we conduct a user study to evaluate the perceptual quality of generated
images. We let 25 annotators (14 undergraduate students, 7 parents of some of the students, and 4
university faculty or staff members, all informed of the evaluation criteria) rank one hundred randomly
selected generation results of different methods based on our benchmark (introduced in [section 3))
from three aspects: fidelity, harmony, and overall quality. As shown in our RoomEditor
outperforms competing methods across all aspects. Notably, while MimicBrush* achieves superior
results on some objective metrics, it lags behind our approach in real user assessments.

5.2.3 Qualitative Comparison

As illustrated in PBE [53] fails to keep object identity, leading to significant deviation
from the reference. AnyDoor [6] better preserves identity but faces issues of improper scaling,
color mismatches, and misplacement. MimicBrush [7] maintains object structure but suffers from
artifacts like copy-paste effects and distortion. In contrast, MimicBrush* and our RoomEditor
achieve seamless integration, realism, and correct orientation. Given the large-scale dataset used for
pre-training MimicBrush*, our RoomEditor is more suitable for furniture synthesis.

5.3 Generalization to Diverse Scenes and Objects

We evaluate the generalization performance of our model using the DreamBooth dataset [41]], which
contains 30 object categories, including backpacks, animals, sunglasses, and cartoon characters. Each
sample is annotated with object masks, consistent with the RoomBench dataset. In this experiment,
the RoomEditor model is neither re-trained nor fine-tuned on external datasets. We compare it



Masked Background Reference Image PBE Anydoor MimicBrush MimicBrush* Ours

Figure 4: Visual results on RoomBench. PBE and AnyDoor achieve good background harmony
but lack object consistency. MimicBrush preserves fidelity but suffers from a copy-paste effect. In
contrast, our method ensures both high fidelity and strong background harmony, resulting in realistic
and coherent furniture synthesis.

Method FID| SSIM7T PSNRT LPIPS| CLIPT DINOT
PBE [53] 108.57 0.580 15.98 0.340 80.98 69.98
AnyDoor 86.07 0.567 14.51 0.372 86.41 82.67
MimicBrush [7] 77.16 0.585 15.35 0.361 87.66 83.70
RoomEditor (Ours) 68.78 0.594 16.43 0.304 89.62 85.04

Table 3: Quantitative evaluation on the DreamBooth dataset. We compare our method with
existing approaches. Despite being trained on only on RoomBench, our method achieves the best
results, showcasing strong generalization capability.

with publicly available models from [33} [6, [7]. As shown in our method significantly
outperforms existing approaches trained on large-scale datasets. These results demonstrate the
strong generalization ability of RoomEditor in synthesizing realistic object placements in unseen
environments, indicating its robustness for real-world applications. Qualitative results in [Figure 12]
further show that RoomEditor naturally integrates diverse objects and scenes.

5.4 Ablation Study

Since our RoomEditor is highly concise, we conduct ablation study to evaluate its integration with key
techniques (e.g., CLIP image encoder and non-shared reference UNet g) in existing methods as shown
in[Table 4] First, we examine the integration of CLIP image encoder, which is commonly adopted to
facilitate feature extraction from reference images as in MimicBrush, resulting in RoomEditor+CLIP.
Although incorporating CLIP leads to a slight improvement in certain metrics, it introduces a
substantial increase in the number of parameters. Next, we analyze the effects of non-shared dual
U-Net configurations, where the reference U-Net g is either frozen or trainable. The results show that
without our parameter-sharing strategy, both variants exhibit significant performance degradation,
particularly when the reference U-Net is frozen. We note that the variant with frozen g is exactly the
same as MimicBrush'. These findings verify the effectiveness of our parameter-sharing U-Net design
for unified feature learning.



All/ Train

Method ‘ FID| SSIMt  PSNRT LPIPS|  CLIPT  DINO?T

Params (M)
RoomEditor (Ours) 943 / 815 18.42 0.793 21.15 0.094 90.51 85.47
RoomEditor+CLIP 1803 / 860 18.38 0.792 21.15 0.094 90.45 85.55
Dual U-Net (Frozen g)+CLIP 2432 / 860 21.12 0.785 20.39 0.105 89.48 83.26
Dual U-Net (Trainable g)+CLIP | 2432 / 1717 19.69 0.787 20.56 0.099 90.09 84.36

Table 4: Ablation Study. We assess the impact of incorporating CLIP and varying dual U-Net
configurations. Adding CLIP improves semantic alignment. Making the reference branch g trainable
improves fidelity but increases parameters significantly.

6 Conclusion

This work advanced furniture synthesis by addressing two key challenges: absence of ready-to-use
benchmarks and feature space divergence in dual-branch architectures. Specifically, we collect and
release RoomBench, a ready-to-use benchmark for furniture synthesis, while presenting RoomEditor,
a parameter-sharing dual U-Net architecture that ensures robust feature alignment. By training our
RoomkEditor on the collected RoomBench, it achieves state-of-the-art performance for furniture
synthesis in terms of geometric coherence and visual fidelity and demonstrates strong generalization
ability to diverse scenes. We hope that our work can encourage further research in furniture synthesis.
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A Implementation Details.

Hyperparameters. In our experiments, the inpainting U-Net is initialized with the Stable Diffusion
1.5 [40]) inpainting model, which takes a 9-channel input, while the reference U-Net is initialized with
the standard Stable Diffusion 1.5 model, which takes a 4-channel input. For the CLIP model,
we employ CLIP-H as the image encoder, following [7]. During both training and inference, images
are processed to a resolution of 512 x 512 by first padding them to a square aspect ratio and then
resizing them accordingly. To compute the CLIP-score and DINO-score, we use CLIP ViT-B/32 [38]
and DINO ViT-S/16 [3], following the protocols of [41},[53,[6, [7]. For the user study, we recruited 20
annotators to evaluate and rank different methods based on fidelity, harmony, and overall quality.

Data Augmentation To enhance robustness against imperfect masks and domain variations, we
apply both image and mask augmentation, as shown in|Table 5|

Type Augmentation Description and Parameters
Horizontal Flipping  Applied with a probability of 50%.
Image Rotation Applied with a probability of 50%, up to 30°.
Scaling Applied with 30% probability, range +20%.
Cropping Minimum retained ratio: 0.75.
Perturbation 25% probability: Random dilation and erosion for variation.
Mask Blurring 25% probability: Boundary smoothing via blurring and thresholding.
BBox 25% probability: Mask replaced with its bounding box.
No Augmentation 25% probability: Original fine-grained mask retained.

Table 5: Image and Mask Augmentation Strategies

B RoomBench Dataset

In this section, we introduce the construction and characteristics of our RoomBench dataset. As
summarized in[Table 6 RoomBench covers a broad range of furniture categories with diverse styles
and high-quality images, enabling realistic simulation of real-world indoor scenes.

To construct the dataset, we first collected raw images from the internet. The data filtering process,
illustrated in [Figure 3] was conducted with the assistance of GPT-4o [1I], which helped to efficiently
filter and organize high-quality image-text pairs. For the training set, we performed precise, pixel-
level mask annotation, which supports various mask augmentations—examples of which are shown
in In contrast, the testing set was annotated using coarse masks to better reflect real-world
conditions, where user-provided annotations are often noisy or imprecise, as depicted in[Figure 7] This
annotation strategy allows us to evaluate model robustness under imperfect labeling scenarios.

"U_"ﬂ

[ Instruction Prompt J ; ) ‘x
You are a professional multimod- Fllt( £ 4

al data cleaning assistant, responsi- |

ble for processing furniture image

data sets. Your task is to determine

whether a given product image co- GPT-40 L
mpletely appears in the correspond-
ing background image . Please ans-

wer "yes" or "no".

Figure 5: Diagram of data filtering, where images first are labeled as furniture and background images.
Then, GPT-40 with specific prompt is used to filter out unmatched and incomplete images.



Categories Training Set | Testing Set
Sofa 1294 61
Lamp 1280 231
Coffee Table 805 24
Wardrobe 681 13
Armchair 563 61
Bed 460 9
Pillow 440 73
Nightstand 319 36
Desk and Chair 158 118
Other 1298 269
Total 7298 895

Table 6: Categories and distribution in our RoomBench.

. S

(a) Training samples (b) Testing samples

Figure 7: In RoomBench, precise masks are annotated for the training samples and can be augmented
accordingly. Coarse masks are provided for the testing samples to simulate user interactions.

C Additional Experiments

C.1 Additional Verification Experiments for Eqn. (5) and Eqn. (6)

From [subsubsection 4.2.1] we derived Eqn. (3)) and Eqn. (€) based on the empirical properties of
inpainting models and assumptions about the feature space. To more rigorously justify the validity of
these assumptions and properties, we conducted the following experiments.




Training Loss (Avg.) Region Merging Loss (Avg.)
3.9 x 1072 4.3 x 1073

Table 7: Quantitative comparison between the average training loss and the region merging loss.

Layer do dl d2 d3 d4 ds mO0 u0 ul u2 u3 u4 us u6 u? u8
cos_sim 0.962 0.955 0942 0931 0.922 0917 0912 0904 0.906 0913 0.921 0925 0.927 0937 0.941 0.945

Table 8: Cosine similarity across feature layers. Here, d, m, and u correspond to the downsampling,
middle, and upsampling blocks of the network, respectively.

For Eqn. (), the core assumption is that the inpainting diffusion model can preserve the unmasked
regions of an image with high fidelity. Therefore, our goal is to demonstrate that the expression
My, © e(I5g) + Mg © €9(R(Ii | Iiy))

can effectively approximate the ground truth (GT) denoising prediction €g(Ig¢). To verify this as-
sumption, we conducted experiments using a pretrained diffusion inpainting model on our full test set.
During the experiments, we added random noise to the input images and sampled random timesteps ¢.
The model was then provided with partial content from the full image (either the background or the
object regions). We extracted the predicted noise components from the corresponding regions and
computed the Ly loss as the evaluation metric:

€6 (Tgt) — (Mg © €o(Iyg) + Mg © e6(R(Ing | Ig)))][, -
The results summarized in show that the merged result—obtained by feeding the model

with separated regions and combining their corresponding outputs—yields a significantly lower loss
than the average training loss (i.e., the average denoising loss during model training, visualized in

[Figure 3), thereby supporting the validity of the assumption in Eqn. (3).

For Eqn. (6)), the underlying assumption is that a property analogous to that in Eqn. (5) also holds
at the feature level. To evaluate this hypothesis from a similarity perspective, we adopt cosine
similarity as the evaluation metric. Specifically, we compute the cosine similarity between the feature
representations extracted from different attention layers on the validation set, defined as

cos_sim ( FilI), Mg © fi(IN) + Mg © fi(R(IY | Igg))) ,

where f;(-) denotes the feature map extracted from the I-th layer of the model. The results in
show that cosine similarities remain consistently above 0.9 across most layers, supporting the validity
of the assumption in Eqn. (6)) and indicating that the feature-level composition effectively preserves
the representational coherence of the full image.

C.2 Generalization to Unseen Datasets: 3D-FUTURE Results

To evaluate the generalization ability of our method on unseen datasets, we conducted cross-dataset
experiments using the 3D-FUTURE [14] dataset, which differs from our RoomBench in visual
domain and object composition.

We selected 1,020 samples covering 34 furniture categories (randomly 30 samples per category).
As the dataset does not provide paired reference images, we generated pseudo-pairs by horizontally
flipping reference objects and applying Gaussian-blurred masks to prevent trivial copy-paste solutions.

As shown in despite being trained exclusively on RoomBench, our model achieves compara-

ble or superior performance to MimicBrush [7] on most metrics, demonstrating strong generalization

to unseen furniture data and novel datasets without fine-tuning. The visualized results are shown
0 8

C.3 Comparison with GPT-40

To further benchmark our method against a powerful commercial system, we include the closed-source
GPT-40 [34] in our evaluation. As a state-of-the-art multimodal model capable of handling multi-



Method FID| SSIMT PSNRt LPIPS| CLIPT DINO?T

MimicBrush [7] 1420  0.6595 20.64 0.272 80.10 64.61
RoomEditor (Ours) 13.91  0.6581 20.93 0.260 80.28 66.97

Table 9: Cross-dataset evaluation on 3D-FUTURE [[14]]. Our model outperforms MimicBrush across
multiple metrics, demonstrating strong generalization to unseen data distributions.

Figure 8: Additional visualization results on the 3D-FUTURE [14] dataset.

Model FID(]) SSIM(1) PSNR({) LPIPS(]) CLIP(!) DINO (1)
MimicBrush [7] 56.44 0.780 19.40 0.113 88.12 79.49
GPT-4o 72.12 0.502 13.84 0.290 87.80 83.30
RoomEditor (Ours) ~ 44.78 0.792 21.05 0.094 90.42 85.12

Table 10: Quantitative comparison with GPT-4o [34] on a 200-sample subset of RoomBench.

image inputs, GPT-40 exhibits strong general-purpose image editing and composition capabilities,
making it a valuable reference for assessing high-level visual reasoning and semantic understanding.

For a fair and efficient comparison, we evaluate GPT-40 [34], MimicBrush [[7]], and our method on
a randomly sampled subset of 200 images from the RoomBench dataset. This subset size ensures
sufficient scene diversity while keeping closed-source inference costs tractable. A comprehensive
set of quantitative metrics is used to capture complementary aspects of visual fidelity and semantic
consistency, including FID, SSIM, PSNR, LPIPS, CLIP, and DINO. Among these, CLIP and DINO are
particularly informative for assessing object-level fidelity—one of the key challenges in compositional
image editing.

The quantitative results are summarized in Table Metrics that emphasize fine-grained spatial
and structural consistency, such as FID and LPIPS, show GPT-40 performing notably worse than
both MimicBrush and our method. In contrast, its CLIP and DINO scores are comparable to or even
higher than those of MimicBrush, reflecting strong global semantic coherence and visually appealing
compositions.

While GPT-40 [34] produces visually coherent and semantically meaningful results, it shows two
consistent weaknesses. First, background preservation: GPT-40 often modifies the surrounding
background, introducing shifts in color or texture that reduce spatial consistency and thus worsen
FID and LPIPS. Second, object fidelity: for certain objects, the generated results exhibit deviations
from the reference in geometry or texture, which contributes to lower SSIM and PSNR scores. The
visualized results of the comparison are shown in [Figure 9|
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Figure 9: Our RoomEditor compares its visual results with those of Mimicbrush [[7] and GPT-40
on RoomBench.

Method FID] SSIM{ PSNRT LPIPS| CLIP{ DINO?{

MimicBrush [[7] 2499  0.761 18.42 0.135 87.06 75.13
RoomEditor (Ours) 21.16  0.766 19.83 0.120 88.90 81.46

Table 11: Evaluation of robustness to mask quality using bounding boxes as masks. Our method
maintains high performance even without accurate shape priors.

C.4 Robustness to Mask Quality

To further assess the robustness of our model to imperfect masks, we evaluated it using coarse
bounding boxes as input masks, thereby removing any explicit shape prior and simulating practical
scenarios where precise segmentation is unavailable.

As described in[Appendix B] our training strategy already introduces imperfect masks through random
perturbations and simplified bounding boxes, encouraging the model to learn shape-consistent
reconstruction even under imprecise guidance. During evaluation, we adopt a similar setup by
replacing object masks with axis-aligned bounding boxes covering target regions.

As summarized in despite lacking detailed shape cues, our method outperforms Mim-
icBrush [[7]] on most metrics, demonstrating strong robustness to mask variations and high-quality
synthesis even with coarse or noisy masks—highlighting its practicality for real-world editing scenar-
10s.



Light Intensity 0.6 0.8 1.0 (base) 1.2 1.4

MimicBrush [7] 70.58 71.16 71.92 70.77  69.97
RoomEditor (Ours) 73.80 73.96 74.77 73.48 72.76

Table 12: Performance under different lighting intensities. Higher values indicate better performance.

Model Params (M) GPU Mem (GB) Speed (samples/min)
PBE [53] 1310 39 14.5
AnyDoor [6] 2451 7.3 14
MimicBrush [[7]] 2432 6.9 10.7
RoomkEditor (Ours) 943 3.2 15.8

Table 13: Comparison of computational efficiency across different methods.

C.5 Robustness to Lighting Changes

To further evaluate the robustness of our method under varying illumination conditions, we conducted
additional experiments with systematically adjusted lighting intensities. Since the original test set
does not explicitly account for lighting variation, we simulated different illumination conditions by
scaling the brightness of background images. Specifically, brightness scaling factors of 0.6 and 0.8
(darker conditions), as well as 1.2 and 1.4 (brighter conditions), were applied to the entire test set.

We compared our method with MimicBrush [[7]] under these modified lighting conditions, and report
the averaged results across all metrics (rescaled to a 0—100 range, with FID and LPIPS inverted
for consistency). As shown in although both methods slightly degrade under extreme
lighting, our approach consistently outperforms [7] across all illumination levels, demonstrating
strong robustness and generalizability to lighting variations without explicit modeling.

C.6 Computational Efficiency Analysis

To provide a fair comparison of computational efficiency across different methods, we report the
model size, memory usage, and inference speed on a unified experimental setup. All experiments
were conducted on a single NVIDIA A6000 GPU in FP16 precision, using single-image inference
with 50 denoising steps.

summarizes model efficiency in terms of parameters (Params), GPU memory usage (Mem),
and inference throughput (Speed). Our method strikes a favorable balance between performance and
efficiency—using significantly fewer parameters and less memory than [[7] while achieving about
1.5 higher inference speed—demonstrating its suitability for practical deployment.

D Additional Visualization Results

In this section, we present additional qualitative results. showcases our results on the
RoomBench dataset, while illustrates our performance on the DreamBooth dataset. As
observed, our method consistently achieves high fidelity and seamless harmony, demonstrating its
effectiveness across both indoor environments and general scenarios. Finally, as shown in|Figure 12}
qualitative results demonstrate that RoomEditor effectively integrates diverse objects into complex
scenes, further validating the utility of RoomBench for real-world applications.

E Limitations and Future Work

Our method has two primary limitations, which we plan to address in future work.

First, the presence of uncommon furniture items (such as clothes racks and microwaves) results in
a long-tail distribution in our collected dataset. Consequently, our model may struggle to capture
complex or rare furniture shapes, as the large intra-category variation in geometry makes it difficult
for the dataset to fully represent all possible shape patterns. This occasionally leads to distorted



Figure 10: Additional visualization results on the RoomBench dataset, demonstrating the high fidelity
and seamless integration of furniture into indoor environments.

Figure 11: Additional visualization results on the DreamBooth dataset, showcasing the performance
of our method in various general scenarios with high fidelity and consistent harmony.

or inconsistent generations, as illustrated in [Figure T3] The issue stems from both the insufficient
training samples for such items and the challenge of learning robust shape priors under limited data
diversity.

Second, our current approach does not explicitly model complex visual phenomena such as object
shadows and varying illumination conditions. Since the model edits only the masked region, shad-
ows or lighting effects outside the mask cannot be synthesized. This limitation is inherent to the
masked-editing paradigm and is also shared by prior works such as PBE [53]], AnyDoor [6]], and
MimicBrush [7]. These factors may significantly affect visual realism and remain challenging for
both our method and existing approaches.
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Figure 12: Visual comparison on DreamBooth dataset [41]].
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Figure 13: Failure cases illustrating distortions and inconsistencies when handling less common
furniture items.

Additionally, given the structural differences between our model and recent DiT-based [36] diffusion
architectures, adapting our formulation and analytical framework to more advanced DiT diffusion
models represents a promising direction for future research.

We leave these aspects for future exploration.
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