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Abstract—Recently, deep learning-based crowd counting meth-
ods have achieved promising performance on test data with the
same distribution as training set, while performance degradation
usually occurs when testing on other or unseen domains. Due to
the variations in scene contexts, crowd densities and head scales,
it is a very challenging issue to tackle multi-domain crowd count-
ing using one deep model. In this work, we propose a domain-
guided channel attention network (DCANet) towards learning
multi-domain crowd counting. In particular, our DCANet consists
of feature extraction module, channel attention-guided multi-
dilation (CAMD) module and density map prediction module.
Given a testing image from a certain domain, channel attention
is adopted to guide the extraction of domain-specific feature
representation, and thus our DCANet can adaptively handle
images from multiple domains. We further propose two domain-
guided learning strategies, i.e., dataset-level domain kernel (DDK)
supervision and image-level domain kernel (IDK) supervision, by
which channel attention in CAMD can be explicitly optimized
to emphasize the channels corresponding to the domain of an
input image. Furthermore, IDK can be adaptively updated when
training DCANet, thereby improving the generalization ability to
unseen scenes. Experimental results on benchmark datasets show
that our DCANet performs favorably for handling multi-domain
datasets using one single model. Moreover, our IDK training
strategy can be applied to boost state-of-the-art methods on single
domain dataset.

Index Terms—Crowd counting, multi-domain learning.

I. INTRODUCTION

Crowd counting, aiming at predicting pedestrian density

map and counts from input image, has a wide range of appli-

cations in video surveillance, traffic monitoring [1], [2], etc.

Recently, deep learning-based crowd counting methods [3]–[9]

have achieved promising performance. For example, given a

dataset such as ShanghaiTech [3], the trained crowd counting

models can obtain satisfying accuracy on its corresponding

testing set, but usually fail to handle other datasets, e.g., UCF-

QNRF [10] or UCF CC 50 [11]. This is due to that there are

noteworthy distribution discrepancy among multiple domains.

As shown in Fig. 1, variations in scene contexts, crowd

densities and head scales are common in different datasets or

even within one dataset. Albeit promising performance on one

specific domain, these crowd counting methods are limited in

generalizing to other domains and perform worse for unseen

scenery in practical applications, which can be validated from

the performance of two state-of-the-art methods CANet [12]
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Fig. 1. Diversity of crowd counting scenes. (a) and (b) are two samples
from ShanghaiTech A, (c) and (d) are from ShanghaiTech B and UCF-QNRF
respectively. It can been seen that diverse head scales and context variances
exist across different datasets and even within one dataset, making it a very
challenging task to tackle multi-domain crowd counting using one deep model.

and DSSINet [13] listed in the first three lines in Table I and

Table II.

Cross-domain learning for crowd counting is a possible

solution to improve generalization ability on target domain.

In particular, few shot learning [14]–[16] and domain adap-

tion [17]–[19] can be exploited to improve the counting accu-

racy on target domain. However, cross-domain crowd count-

ing ignores the performance degradation on source domain.

Meanwhile, these deep models may overfit to one specific

domain, considering small amount of images in crowd count-

ing datasets. In [20], Marsden et al. proposed to relieve the

forgetting problem on source domain by introducing a domain

classifier, based on which corresponding counting branch is

activated. However, it heavily relies on the classification accu-

racy and several counting branches also result in cumbersome

network architecture. Thus, it is a challenging, valuable but

unresolved task to simultaneously obtain good performance

on multiple domains, i.e., multi-domain crowd counting. An

intuitive strategy is to directly train the model by combining

all the training images of multiple domains. However, multi-

domain crowd counting cannot be easily tackled by observing

the incapability of consistent performance improvement from

the last line in Table I and Table II.

In this paper, we propose a Domain-guided Channel At-

tention Network (DCANet) to address multi-domain crowd

counting, where network architecture and learning strategies

are specifically developed to exploit the knowledge from

multiple domains. First, in terms of network architecture, our

DCANet consists of three modules, i.e., feature extraction,
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channel attention-guided multi-dilation (CAMD) and density

map prediction. As shown in Fig. 2, our DCANet is very

concise. CAMD extracts features from multiple domains.

Specifically, the multiple dilation rates in convolution kernels

is beneficial to deal with the head scale variance. And accord-

ing to [21], different channels in multi-dilation convolutions

would response when receiving different scene contexts, crowd

densities and head scales. To this end, the domain variance

can be well modeled by CAMD. Therefore, as suggested

in [22], the active parameters in deep models are usually

sparse. And for crowd counting, we suggest that different

channels in multi-dilation convolutions would response when

receiving different scene contexts, crowd densities and head

scales. Therefore, we introduce a simplified channel attention

module to indicate the importance of deep features after multi-

dilation convolutions. DCANet is expected to adapt the bias of

domain distribution caused by the crowd density, illumination,

perspective, etc.
Second, to better exploit the attention mechanism in CAMD

module, we further propose two learning strategies to explicit-

ly impose supervision on channel attention map. In particular,

dataset-level domain kernel (DDK) and image-level domain

kernel (IDK) are proposed to act as extra supervision signals

when training DCANet. As for DDK, we assume that images

from one dataset are with the same domain, and thus the

importance of convolution channels can be computed based

on a pre-trained DCANet model. Then DDK can be adopted

to guide the channel attention in CAMD module. Furthermore,

the manually split datasets still have variations, as shown in

Fig. 1, based on which we propose IDK to adaptively update

the channel attention supervision for individual image. By

adopting IDK, our DCANet can obtain satisfying performance

for multiple domains and generalize better to unseen domains.
Experimental results on benchmark datasets show the effec-

tiveness of our DCANet. On unseen domains, our DCANet

exhibits better generalization ability in comparison with sin-

gle domain methods, and is comparable with cross-domain

methods. On training domains, our DCANet can achieve

comparable or better performance in comparison with single

domain crowd counting methods specifically trained for the

corresponding dataset.
To sum up, the main contributions of this work are as

follows:

• We propose a domain-guided channel attention network

(DCANet) to address multi-domain crowd counting. To

the best of our knowledge, DCANet is the first work

to tackle multi-domain crowd counting using one single

deep model.

• Two novel learning objectives, i.e., dataset-level domain

kernel (DDK) and image-level domain kernel (IDK), are

proposed to guide the training of DCANet, making it

effective in handling multiple domains and generalizing

to unseen domains.

• Extensive experiments are conducted to validate the ef-

fectiveness of our DCANet against single domain and

cross-domain crowd counting methods. Also with better

re-split of different domain samples, the performance of

DCANet can be further boosted.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews relevant works. Section III presents the

proposed method towards learning multi-domain crowd count-

ing. Section IV conducts experiments along with analysis.

Finally, Section V ends this paper with concluding remarks.

II. RELATED WORK

In this section, we briefly review relevant works of CNN-

based crowd counting and cross-domain crowd counting, as

well as multi-domain learning for other computer vision tasks.

A. CNN-based Crowd Counting

Currently, various CNN-based methods have been suggested

to train a better crowd estimator from various aspects, such as

network architectures [3]–[6], [6], [7], [23]–[25], Graph Neu-

ral Network (GNN) [9], Neural architecture search (NAS) [26],

loss functions [27]–[29], perspective information [30]–[34],

etc. To alleviate the scale variance, Zhang et al. [3] presented

a multi-column architecture for simple fusion of deep features

with different sizes of receptive fields. CSRNet [35] stacks sev-

eral dilated convolutions after truncated VGG [36] to enlarge

receptive fields. Cao et al. [37] proposed scale aggregation

modules to extract multi-scale features for accurate crowd

count. Song et al. [7] adopted U-shape backbone to predict

density maps from features of different scales and then com-

bined them to estimate the final count. Luo et al. [9] suggested

to use GNN to model scale variance and Hu et al. [26]

proposed to adopt NAS technique to search the optimal archi-

tecture. Apart from exploring various architectures, Cheng et
al. [27] aimed to replace Euclidean distance with maximum

excess over pixels (MEP) loss and achieved promising per-

formance. To avoid the intrinsic limitations of density maps,

Ma et al. [28] proposed Bayesian loss which constructed a

density contribution probability model from point annotations.

And Wang et al. [29] proposed optimal transport loss to model

the discrepancy between the estimated maps and ground-truth

maps. Despite of different network architectures and training

losses, these methods aim at tackling single-domain crowd

counting, and fail to generalize to multiple domains.

B. Cross-domain Learning in Crowd Counting

Cross-domain learning mainly includes one/few shot learn-

ing [14]–[16], domain adaption [17]–[19], etc. [15] present-

ed a meta-learning inspired approach to solve the few-shot

scene adaptive crowd counting problem, and [14] further

introduced one-shot scene-specific crowd counting. For do-

main adaption, CODA [17] performs adversarial training with

pyramid patches from both source and target domains, so

as to tackle different object scales and density distributions.

Wang et al. [18] released a large synthetic dataset (GCC), and

proposed SE CycleGAN to bridge the domain gap between

the synthetic and real data. Gao et al. [19] proposed multi-

level feature aware adaptation (MFA) and structured density

map alignment (SDA) to extract domain invariant features and

make density maps with a reasonable distribution on the real

domain. However, domain adaption methods [17]–[19] focus
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on improving performances on target domains and suffer from

catastrophic forgetting [38], [39], giving rise to unsatisfying

performances on source domains. To mitigate the catastrophic

forgetting issue, Marsden et al. [20] proposed domain specific

branches to process the backbone feature under the guidance

of a classification network. Cross-domain methods cannot well

address multiple domains and unseen domains.

C. Multi-domain Learning

Multi-domain learning aims at improving the performance

over multiple domains. The initial idea of multi-domain

learning is to train one model based on all the data from

multiple sources [40]. To this end, domain-invariant features

are extracted by the shared backbone, and domain-related

representations are captured by the domain-specific branches.

Similarly, cross-stitch network [41] proposes cross-stitch units

that can learn an optimal combination of shared and domain-

specific representations. Xiao et al. [42] argued that the

domain-specific information can be further embedded into

domain-related neurons and proposed domain guided dropout

layer (DGD) for adaptive selection of effective neurons for

each domain. Recently, Rebuffi et al. [43] proposed adapter

residual modules to enable a high-degree of parameter sharing

among domains. MDLCC [44] is proposed by introducing

device-specific channel re-weighting module, which adopts

the camera-specific characteristics to re-weight the common

features. Apart from these methods, other works aim to learn

domain-invariant representations while preserving the domain-

specific representations. Liu et al. [45] proposed an adversarial

multi-task learning to mitigate the shared and private latent

spaces from interfering with each other via orthogonal reg-

ularization. Chen et al. [46] proposed to combine negative

log-likelihood loss and the �2-norm loss with the adversarial

loss.

Despite of extensive studies on multi-domain learning,

multi-domain crowd counting remains not well addressed.

Due to the large variances of the characteristics on multiple

domains in crowd counting, it is not trivial to directly adopt

existing multi-domain methods from other fields to tackle

multi-domain crowd counting.

III. PROPOSED METHOD

Let us first define the multi-domain crowd counting prob-

lem. Given training images from M domains, the multi-

domain dataset is constituted with multiple sub-datasets D =
{D1,D2, · · · ,DM}. For each sub-dataset Dm, it consists of

Nm input images Ii and their corresponding ground-truth

density maps Y gt
i , i.e., Dm = {(Ii,Y gt

i )}Nm
i=1. Multi-domain

crowd counting aims to learn a single model to perform well

on all the testing images from M domains. Also it is expected

to generalize better to unseen domains than single domain

methods. In this section, we first propose a concise network

DCANet for multi-domain crowd counting, and then propose

two domain-guided training strategies to explicitly exploit the

knowledge of multiple domains for benefiting the training of

DCANet.

A. Domain-guided Channel Attention Network

As shown in Fig. 2, DCANet F with parameters Θ
generally consists of three modules, i.e., feature extraction,

channel attention-guided multi-dilation (CAMD), and density

map prediction. For a given input image I with spatial size

H ×W , DCANet can predict its crowd density map Ŷ with

size H
2 × W

2 by forward pass through three modules.

1) Feature Extraction Module: Since the following two

modules are with lightweight parameters, feature extraction

module plays a crucial role for obtaining sufficient deep

features for crowd counting [47]. Apart from the commonly-

used VGG-based [36] architecture, several feature extraction

modules have been developed for better crowd counting, such

as encoder-decoder based [48], UNet-based [47], [49] and

DenseNet-based [50] architectures, etc. In this work, we adopt

a truncated HRNet-W40-C [51] (from Stage1 to Stage3) with

a convolutional layer (stacked behind Stage3 to reduce the

channel number to be C) as the feature extractor in our

DCANet, resulting in deep features with size H
4 × W

4 × C,

where C is channel number.

2) Channel Attention-guided Multi-dilation Module: Con-

sidering diverse crowd densities and head scales in multiple

domains, multi-dilation convolutions are generally suggested

to extract multi-scale features [52], [53]. Specifically, the

multi-dilation network is comprised of 4 branches with dilation

rates 2, 4, 6 and 8, respectively. These four features are

concatenated as the final multi-scale features with dimension
H
4 × W

4 × 4C1, by which variations such as different head

scales can be captured by different channels.

It is straightforward to directly predict crowd density map

based on the multi-scale features. However, multiple domains

have much more diverse contexts, and are very difficult to

model only using multi-dilation convolutions. Motivated by

the sparse features in deep models, we suggest that the convo-

lution channel responses vary with different domains, and thus

propose to further introduce channel attention map to guide

the activation of deep features of multi-dilation convolutions.

Specifically, we adopt a channel attention module to generate

a map m with size 1 × 1 × 4C to indicate the importance

of the multi-scale features. In comparison to the attention

module in [54], our channel attention module is much more

simple, in which only one convolutional layer with 4C output

size is adopted. Then global average pooling and sigmoid
are adopted to project it as a 1 × 1 × 4C channel attention

map m. The channel attention map can then be used to re-

weight the features of multi-dilation convolutions, and it act

like self-attention to measure the importance of deep features

for different domains.

3) Density Map Prediction Module: The features from

CAMD module are finally fed to a simple density map

predictor, with only three convolutional layers, and we finally

upsample the density map 2× as the final estimated density

map Ŷ .

Training baseline DCANet. It is straightforward to adopt

1We omit the dimension of batchsize for simplicity.
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Fig. 2. Architecture of DCANet. Here, “�” indicates element-wise multiplication and “DConv” means dilated convolution. In the training stage, the feature
extractor takes images from multi-domain dataset as the input. The output of the feature extractor serves as two roles. On the one hand, they are used to
estimate the image-specific attention mi for each image Ii. On the other hand, they serve as the input of CAMD module. The domain channel attention loss
LDDK / LIDK encourages mi close to domain kernel kDm / ki. The output features of the CAMD module are re-weighted by mi. Finally, the density
map predictor takes the re-weighted features as the input and outputs the estimated density maps.

MSE loss to train DCANet,

Lden = min
Θ

M∑

m=1

Nm∑

i=1

‖Ŷi − Y gt
i ‖2, (1)

where Ŷi = F(Ii;Θ) is the predicted density map using

DCANet, Y gt
i is the ground-truth density map of input image

Ii. By the naive training strategy, proper channel attention is

expected to be implicitly learned in CAMD module to guide

the feature selection of multi-dilation convolutions. However,

self-attention is still limited in learning the diverse knowledge

from multiple domains.

B. Domain-guided Training Strategy

In order to guide the attention map m in CAMD module, we

propose two supervision strategies, i.e., dataset-level domain

kernel (DDK) supervision and image-level domain kernel

(IDK) supervision.

1) Dataset-level Domain Kernel: Motivated by Xiao et
al. [42], we adopt the impact score to demonstrate the effective

convolution kernels in multi-dilation convolutions of a baseline

DCANet model. Given input Ii, let f c(Ii) be the feature map

of c-th channel from multi-dilation convolutions. The predic-

tion count P̂i and ground-truth count P gt
i can be respectively

obtained by integrating Ŷi and Y gt
i . Then, the metric MAE

for the predictions in dataset Dm can be formulated as:

MAE =
1

Nm

Nm∑

i=1

||P̂i − P gt
i ||. (2)

Here we further generalize the definition of MAE, and use it

for a single image. Denote by MAE\c(Ŷi) the MAE obtained

by setting f c(Ii) as zero. It can be calculated via Eqn. (2),

where Nm is 1. For the c-th convolutional kernel of multi-

dilation convolutions, we have

sc(Ii) = MAE\c(Ŷi)−MAE(Ŷi), (3)

where sc(I) is the impact score of the c-th channel for image

Ii.
Then we suppress negative values in the impact score

and then normalize the whole impact score, which can be

formulated as

s̃c(Ii) = softmax(max(sc(Ii), 0)). (4)

Fig. 3 shows the t-SNE [55] visualization of the normalized

impact score of the training images. It can be seen that

the distribution of normalized impact score can be basically

categorized into three subsets. Besides, the distribution of

ShanghaiTech A [3] overlaps with that of UCF-QNRF [10],

while being away from that of ShanghaiTech B [3], which

accords with the fact that the images of ShanghaiTech A and

UCF-QNRF are searched from the web, while the images of

ShanghaiTech B are all captured from the street views. This

inspires us to propose DDK based on the impact scores of each

domain. Specifically, for the m-th domain Dm, the averaged

impact score of channel c is computed as

s̄mc =
1

Nm

Nm∑

i=1

sc(Ii), s.t. Ii ∈ Dm. (5)

In this case, the higher value s̄mc is, the more vital the

c-th convolution kernel is for domain Dm. As the average

impact score acts as an indicator of the importance of the

convolutional kernels for a domain, we propose DDK kDm

for domain Dm

kDm
= softmax(max(s̄mc , 0)), (6)
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Fig. 3. The t-SNE [55] visualization of normalized impact scores of training
samples. Since the images in ShanghaiTech B are captured from street views
while the images from ShanghaiTech A and UCF-QNRF are searched from
the web, the data distribution of ShanghaiTech A and UCF-QNRF should
overlap with each other significantly and are expected away from that of
ShanghaiTech B. The visualization basically accords with the prior distribution
of three datasets.

Fig. 4. Visualization of dataset-level domain kernels.

by which we suppress negative values in the impact score and

then normalize the averaged impact score for domain Dm.

In Fig. 4, domain kernels are visualized for three datasets. It

can be seen that the activation of domain kernels is sparse, and

domain kernels are relevant with different datasets, which also

supports our basic idea, i.e., one single deep model is sufficient

to tackle multi-domain crowd counting. In the DDK strategy,

the images are categorized into different domains based the

corresponding manually-split datasets. For each domain Dm,

the domain kernel kDm is calculated via Eqn. (6). The domain

kernel kDm works as a fixed supervision signal in the whole

training phase.

Then for any domain Dm, its domain kernel kDm
can be

computed, and can be used to act as the supervision signal

for attention map m in CAMD module. Specifically, LDDK

is defined as:

LDDK = min
Θ

M∑

m=1

Nm∑

i=1

‖mi − kDm
‖2, (7)

where mi is the attention map of Ii in CAMD module.

Overall, the learning objective can be defined as

LD = Lden + λDLDDK , (8)

(a) DCANetbase (b) DCANet(LD)

Fig. 5. The t-SNE visualization of predicted channel attention of
DCANetbase and DCANet (LD) on the test sets. It is seen that DDK aims to
push all the predicted channel attentions forward to the fixed DDK, and thus
DCANet (LD) is expected to achieve better performance over the multiple
datasets.

λD is a hyper-parameter to balance Lden and LDDK . The

attention supervision DDK will guide the attention module

directly to find an optimal status and improves the inter-

pretability of the outputs of the attention module.

2) Image-level Domain Kernel: Despite of the improve-

ments of DDK training strategy, it suffers from limitations. The

manual split of datasets cannot guarantee the samples within

a dataset are from the same domain, which yields misleading

supervision using the fixed DDK. Fig. 5 displays the t-SNE

visualization of predicted channel attention of DCANet (LD)

which is learned with DDK strategy. To address this issue, we

further propose the IDK strategy, where image-specific domain

kernels can be adaptively updated during training DCANet,

instead of pushing the attention map to its corresponding fixed

DDK.

We mark the IDK for image Ii as ki. Generally speaking,

ki is the linear combination of DDK from multiple domains

with adaptive coefficients. The image-specific domain kernel

ki for the input image Ii is formulated as

ki =
M∑

m=1

μi
mkDm

, (9)

where M is the number of domains, μi
m is the weight of

domain kernel kDm and is defined as the normalized cosine

similarity between mi and kDm

μi
m =

exp(μ̃i
m)

∑M
m=1 exp(μ̃

i
m))

, s.t. μ̃i
m =

〈mi,kDm
〉

‖mi‖2 ‖kDm
‖2

(10)

where 〈·, ·〉 is the inner product operator.

Analogously, we define IDK-based loss function as

LIDK = min
Θ,kDm

M∑

m=1

Nm∑

i=1

‖mi − ki‖2. (11)

We emphasize that one of the main differences between LIDK

and LDDK lies in the adaptive ki, where the coefficients can

be adaptively updated.

Finally, the overall loss function LI is the combination of

Lden and LIDK , defined as

LI = Lden + λILIDK . (12)

Here are some notes on the merits of IDK. (i) Image-level

domain kernel ki is constructed for each input image Ii during
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(a) DCANetbase (b) DCANet(LI )

Fig. 6. The t-SNE visualization of predicted channel attention of
DCANetbase and DCANet (LI ) on the test sets. When adopting IDK training
strategy, the predicted attention are moving towards to its adaptive instance-
aware domain kernel, making the distribution space of IDK more flexible than
that of DDK, which accords with higher performance of DCANet (LI ) on
the unseen datasets in Table III.

training. Thus, different images have their own specific image-

level domain kernels, even though the images may come from

the same dataset. (ii) In contrast to the model learned with

LD, model trained with LI performs better in multi-domain

training and can generalize better to unseen images. Fig. 6

shows the t-SNE visualization of predicted channel attention

of DCANet (LI ) which is learned with IDK strategy.

3) Re-split of Muti-domain Datasets: Since the impact

score indicates the significance of the convolutional kernels for

the corresponding input image, it is intuitive to further inves-

tigate IDK strategy by performing clustering over the training

images based on the corresponding impact scores. Concretely,

we normalize the impact score (obtained on the baseline model

of DCANet) of each image Ii via Eqn. (4). The normalized

impact scores are then used to cluster via KMeans++ [56], by

setting S subsets. Afterwards, we compute the domain kernels

of each subset and perform IDK training, respectively. The

trained model is termed as DCANet (sub=S).

To further exploit the potential of clustering, it is reasonable

to obtain the impact scores of input images based on DCANet

(sub=S) instead of DCANetbase and then repeat the steps of

computing domain kernels of each subset and perform IDK

training on the model DCANet (sub=S). The trained model

is denoted as DCANet (sub=S, irs=1), where irs stands for

iterative re-splitting. For naming consistency, DCANet (sub=
S) can also be re-written as DCANet (sub = S, irs = 0) .

Accordingly, we can obtain DCANet (sub= S, irs= t + 1)

when such a training loop is conducted based on DCANet

(sub=S, irs= t), where t is the index of iterative re-splitting.

C. Pipeline of training full DCANet

First, on the training dataset from M domains, we train

baseline DCANet model using Eqn. (1) for 400 epochs,

based on which DDK can be accordingly computed for the

subsequent training procedure. The baseline model is named

as DCANetbase. Second, DCANetbase can be further trained

via DDK training loss Eqn. (8) for 100 epochs, resulting

in DCANet (LD). Third, DCANet (LD) is further updated

through IDK training loss Eqn. (12) for 100 epochs, resulting

in DCANet (LI ). For training DCANet (sub=S), we firstly

explore the performances with different number of subsets to

finally determine the suitable value of S. Then we further

perform iterative re-splitting training with the determined

number of subsets as stated in Sec. III-B3, and obtain DCANet

(sub=S, irs= t) where t is the index of iterative re-splitting.

The training epoch of DCANet (sub=S, irs= t) is also set

as 100.

IV. EXPERIMENTS

In this section, we first present details of implementation

and datasets, then compare DCANet with the state-of-the-art

crowd counting methods. Finally, ablation studies are conduct-

ed to validate the effectiveness of our proposed DDK and IDK

in improving the performances on multi-domain dataset and

even unseen dataset. The source code of DCANet is publicly

available at https://github.com/Zhaoyi-Yan/DCANet.

A. Datasets

Multi-domain Dataset. To evaluate the performance of

multi-domain crowd counting, we build our multi-domain

dataset by setting D1, D2 and D3 as ShanghaiTech A [3],

ShanghaiTech B [3] and UCF-QNRF [10], respectively. Con-

cretely, the training images of these three datasets are merged

as the training data of DCANetbase. The trained model is then

evaluated on testing images of the three datasets, respectively.

These three datasets are taken as the observed domains. To

further evaluate the generalization of the trained model, we

evaluate the performance of the trained model on UCF CC 50

and WorldExpo’10. These two datasets are employed as un-

seen domains in the paper. We adopt MAE and RMSE as the

evaluation metrics for all datasets, which is consistent with

[12], [35]. The detailed descriptions of these five datasets are

listed as below.

ShanghaiTech [3] consists of 1,198 images, among which

482 images are collected from the web (Part A) and 716

images are captured from street views (Part B). Following the

common settings [3], 300 images in Part A and 400 images in

Part B are used for training, while the remaining images are

used for testing. To make brief notations, Part A and Part B of

ShanghaiTech are abbreviated as SHA and SHB, respectively.

UCF-QNRF [10] consists of 1,535 images, among which

1,201 images are used for training while the others for testing.

This dataset is very challenging, since it contains 1,251,642

people with various head scales, densities and viewpoints. The

name UCF-QNRF is abbreviated as QNRF in this paper.

UCF CC 50 [11] only includes 50 images for testing. Due

to the diverse scenes, this dataset is suitable to evaluate the

performance of crowd counting for multiple domains. This

dataset contains 50 images of diverse scenes. This dataset

is only used as testing, so we evaluate our model on the

whole dataset (i.e., 50 images). UCF 50 is the abbreviation

of UCF CC 50 if necessary.

WorldExpo’10 [57] comprises 3, 980 annotated frames ex-

tracted from surveillance videos. Five testing scenes are avail-

able with a Region of Interest (ROI) in each scene. We

only report the average MAE of five testing scenes due to

the limited space. WE’10 is adopted as the abbreviation of

WorldExpo’10.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MONTH YEAR 7

TABLE I
MAES OF CANET FOR VARIOUS COMBINATIONS OF TRAINING AND

TESTING SETTINGS. “�” INDICATES THE PERFORMANCE OF EVALUATION

ON THE SINGLE DOMAIN.

Train

Test
SHA SHB QNRF UCF 50 WE’10

SHA 62.3� 29.5 167.0 335.9 30.4

SHB 138.7 7.8� 256.8 630.0 37.3

QNRF 78.6 35.9 107.0� 367.1 47.6

Multi-domain set 61.8 10.6 101.2 345.8 15.2

TABLE II
MAES OF DSSINET FOR VARIOUS COMBINATIONS OF TRAINING AND

TESTING SETTINGS. “�” INDICATES THE PERFORMANCE OF EVALUATION

ON THE SINGLE DOMAIN.

Train

Test
SHA SHB QNRF UCF 50 WE’10

SHA 60.6� 21.7 199.9 425.6 39.9

SHB 148.9 6.9� 332.1 709.0 46.3

QNRF 65.8 12.5 99.1� 420.5 24.7

Multi-domain set 60.1 9.0 94.6 332.4 14.5

B. Implementation Details

We adopt fixed Gaussian kernel of size 15× 15 to generate

ground-truth density maps. We implement our DCANet with

Pytorch [58], and use Adam [3] optimizer with fixed learning

rate 0.0001. The batch size is 16. For images in ShanghaiTech,

if the shorter side of the image is smaller than 416, we resize

them to make the shorter side be 416. Besides, for those

images that are too large in UCF-QNRF, we resize them and

make the side length no larger than 2, 048. We do not change

the aspect ratio when performing resizing operation. After

resizing, random horizontal flipping and color jittering are also

applied. Finally we perform the random cropping with patch

size 400×400. For WorldExpo’10 and UCF CC 50, we only

use the corresponding images for evaluating the generalization

ability of the model. We resize the images in UCF CC 50

in the same way as ShanghaiTech does. For WorldExpo’10

whose images are with fixed size 576 × 720, following [35],

each image and its dot maps are masked with ROI during

preprocessing. Empirically, we find that DCANet by setting

C=128 shows satisfying performance and runtime. Besides,

λD and λI are all set to 1.

C. Difficulty of Multi-domain Crowd Counting

Before presenting comparison experiments, we first analyze

the performance of two state-of-the-art single domain methods,

i.e., CANet [12] and DSSINet [13], when handling multi-

domain datasets. In Table I and Table II, we report the

performance of CANet [12] and DSSINet [13]2, when the

model is trained on a certain dataset while testing on multiple

datasets. Although they deliver high performance for each test-

ing set with the same distribution as the training set, both two

methods yield significant performance drops when distribution

2Our reported results are based on the officially released training codes and
pre-trained models.

discrepancy exists between the training and testing sets. For

example, compared with the setting that training and testing

on ShanghaiTech B, CANet / DSSINet show 278.2%/214.5%
increase on MAE when trained on ShanghaiTech A and tested

on ShanghaiTech B. These single domain crowd counting

methods are expected to perform worse on unseen domains,

restricting their practical applications. Besides, when we train

the model with the multi-domain dataset (i.e., refer to IV-A for

details), we notice that the model does not produce consistent

performance gains across all testing sets, showing that multi-

domain crowd counting learning is difficult to achieve merely

by mixing all the training data. Such observations encourage

us to tackle multi-domain crowd counting using one single

deep model.

D. Multi-domain Crowd Counting

1) Comparison with State-of-the-arts: To verify the effec-

tiveness of our proposed DCANet, we compare our method

with single-domain methods CSRNet [35] and CANet [13],

cross-domain method DSM [20] and multi-domain method

DGD [42]. Because the source code of DSM is not released

and DGD for person re-identification cannot be applied to

crowd counting, we make the following modifications. The

major contribution of DSM [20] lies in constructing the

domain-specific branch for each domain, and an extra domain

classifier is also trained to classify the input to help select

the appropriate branch. We build the domain-specific branches

by tripling the CAMD module and removing all the attention

prediction branches, besides an extra domain classifier is

also constructed as DSM. The modified method is named

as DSM*. DGD [42] is an approach to tackle multi-domain

person re-identification, where the channel dropout mechanism

is the essential part in tackling the multi-domain problem. We

modify DCANet by replacing the attention mechanism with

channel dropout to select the effective channels instead of re-

weighting the features, which is termed as DGD*. Table III

lists the results of these methods and our proposed DCANet.

By comparing our method with the competing approaches,

we have the following three observations. (i) It can be seen that

single domain methods (i.e., CSRNet [35] and CANet [13])

only perform well on the observed domains, however, fail

to generalize to unseen domains. (ii) DSM* performs worse

than our method on the observed domains, mainly ascribing

to the imperfect accuracy of the domain classifier. Besides,

for unseen domain images, DSM* has to select an improper

module via the domain classifier, resulting in large perfor-

mance drops on UCF CC 50 and WorldExpo’10. (iii) As

for DGD*, it achieves generally satisfying performances in

both observed and unseen domains. There is still much room

for performance improvement. In fact, channel dropout in

DGD* and image-specific channel attention in DCANet can

be separately regarded as hard and soft ensemble learning.

According to [59], [60], soft ensemble learning is superior to

the hard one, which is in accord with the higher performances

of DCANet (LI ) on observed domains and even on unseen

domains.
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(a) Input images (b) DCANet (baseline) (c) DCANet (LD) (d) DCANet (LI ) (e) Ground-truth

Fig. 7. Illustration of density maps predicted by different methods. (a) input images, (b), (c) and (d) are the density maps predicted by DCANet (baseline),
DCANet (LD) and DCANet (LI ), respectively. (e) ground-truth dot annotations.It is seen that DCANet (LI ) outperforms the others.

TABLE III
COMPARISON WITH STATE-OF-THE-ARTS TRAINED ON THE MULTI-DOMAIN DATASET FROM SHA/SHB AND QNRF. UCF 50 AND WE’10 WORK AS

THE UNSEEN DOMAINS IN TESTING AND ARE USED FOR EVALUATING GENERALIZATION PERFORMANCE.

Method

Observed domains Unseen domains
SHA SHB QNRF UCF 50 WE’10

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Single-domain Method
CSRNet [35] 68.4 107.2 13.5 18.9 101.1 176.1 343.1 469.8 16.3

CANet [12] 66.4 103.1 12.8 20.6 104.2 170.5 340.9 486.3 15.1

Multi-domain Method
DGD* [42] 59.2 101.4 8.4 13.5 94.6 167.8 326.3 446.4 14.8

Cross-domain Method
DSM* [20] 59.8 100.8 8.5 14.3 94.1 166.7 376.3 452.8 19.7

Our Method
DCANetbase 62.5 99.3 9.4 14.8 95.9 170.6 330.7 453.5 15.9

DCANet (LD) 59.0 99.2 7.9 12.9 93.8 164.9 345.1 460.5 17.3

DCANet (LI ) 58.3 99.3 7.2 11.8 88.9 160.2 309.6 431.4 12.4
DM-Countbase 61.1 101.5 8.4 13.0 84.3 156.3 311.2 422.6 14.7

DM-Count (LD) 58.2 98.6 7.0 11.1 82.2 147.3 341.5 450.7 17.0

DM-Count (LI ) 56.8 97.4 6.1 10.3 80.4 144.1 296.6 412.5 11.5

(a) ShanghaiTech A (b) ShanghaiTech B (c) UCF-QNRF (d) WorldExpo’10 (e) UCF CC 50

Fig. 8. From top to bottom are inputs and the corresponding channel attentions predicted by DCANet (LI ), respectively sampled from ShanghaiTech A /
B, UCF-QNRF and unseen dataset WorldExpo’10, UCF CC 50.
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2) Comparison of DCANet variants with different train-
ing strategies: As for our proposed DCANet, although it

is concise, when embedded with a CAMD module, better

results can be achieved than single domain methods. From

the last few rows in Table III, when compared with base-

line DCANet, it is seen that DCANet (LD) shows better

performances on the observed domains, which is mainly due

to the introduction of DDK supervision. However, DCANet

(LD) delivers inferior performances on the unseen domains

compared to baseline DCANet. This is mainly attributed to

the limitations of static DDK when handling images from

unseen domains. Finally, DCANet (LI ) outperforms baseline

DCANet with 4.2, 2.2, 7.0 MAE decreases on the observed

domain ShanghaiTech A/B, UCF-QNRF, and even with 21.1
and 3.5 MAE decreases on the unseen domain UCF CC 50

and WorldExpo’10, respectively. Such significant performance

gain is mainly creditable to IDK which is adaptive learning

during training and is in view of all the information of images

in all the domains available, instead of only manually-divided

independent domains in DDK. In Fig. 7, we show some testing

samples evaluated on model DCANetbase, DCANet (LD) and

DCANet (LI ). It can be seen that DCANet (LI ) estimates the

most accurate density maps and counts.

Furthermore, we try to apply our learning strategy to

state-of-the-art single-domain crowd counting method DM-

Count [29], whose source code is publicly available. We add

CAMD block before the last convolutional layer of DM-

Count, and train the model on the multi-domain dataset to get

DM-Countbase. It is noted that our DDK and IDK strategies

only provide additional supervisions on the predicted channel

attention in CAMD, and we keep the other settings consistent

with the original networks. DM-Count (LD) and DM-Count

(LI ) can also be obtained by performing DDK and IDK

training strategies. Considering the significant performance

gains on both our concise DCANet and the state-of-the-art

method DM-Count, our DDK and IDK training strategies are

effective in tackling multi-domain crowd counting.

Fig. 8 shows some visualizations of estimated channel

attention in DCANet (LI ). In Fig. 8(a), the values of channel

attention become larger as the channel index increases. It

indicates that the network assigns higher weights to the feature

maps with large receptive fields, which is consistent with

large head scales of the input. In Fig. 8(b)(c), the head scales

are smaller than Fig. 8(a). It can be seen that the predicted

channel attention shows larger peak values for convolution

channels with smaller dilation rates. Besides, even for unseen

datasets WorldExpo’10 and UCF CC 50 (i.e., Fig. 8(d)(e)),

we observe that estimated attention maps of Fig. 8(d) show

high responses for relatively smaller indexes compared with

Fig. 8(e), corresponding to the head scales of the two images.

3) Re-split of Multi-domain Datasets via Clustering: Ta-

ble IV demonstrates the performance when the training images

are clustered via the corresponding normalized impact scores

and then conducted with IDK training, which is detailed illus-

trated in Sec. III-B3. The number of clusters are respectively

set from 3 to 6 subsets, resulting in four models DCANet

(sub=3), DCANet (sub=4), DCANet (sub=5) and DCANet

(sub=6).

TABLE IV
MAES OF DCANET WHEN RE-SPLITING.

Method SHA SHB QNRF

DCANetbase 62.5 9.4 95.9

DCANet (LD) 59.0 7.9 93.8

DCANet (LI ) 58.3 7.2 88.9

DCANet (sub = 3) 58.0 7.1 88.5

DCANet (sub = 4) 57.1 6.7 86.7

DCANet (sub = 5) 56.8 6.6 86.2

DCANet (sub = 6) 57.0 6.8 86.1

On the one hand, we observe that DCANet (sub = 3)

outperforms DCANet (LI ), which demonstrates the rationality

of the re-split. On the other hand, when the number of subsets

increases, the performance consistently improves until the

number of domain kernels reaches 5. It is noted that DCANet

(sub=5) delivers the best average MAE, surpassing DCANet

(LD) with MAE 2.2, 1.3 and 7.6 over the datasets, which

shows the effectiveness of re-split. Regarding the performances

shown in Table. IV, we eventually decide that clustering with

5 subsets as the basic setting of re-splitting.

4) Iterative Re-split of Multi-domain Dataset via Clus-
tering: To further exploit the the potential of clustering,

we perform iterative re-split training procedure illustrated in

Sec. III-B3. Table V lists the results. It can be seen that

performance improves moderately as the number of re-split

increases until irs hits 1. DCANet (sub=5, irs=2) does not

appear to have significant performance gains over DCANet

(sub=5, irs=2), and thus we adopt (sub=5, irs=1) as our

final setting.

E. Single-domain Crowd Counting

Intuitively, DDK and IDK not only can be used in multi-

domain learning, but also can be adopted to improve the

performance in single domain crowd counting. Table VI

lists the performance of our method and state-of-the-arts.

The baseline DCANet in single-domain is represented as

DCANetbase(single). Similarly, in single-domain problem,

DCANet (LD, single) and DCANet (LI , single) can al-

so be trained when the number of domains M degrades

to 1, as described in Sec. III-B. It can be seen that our

DCANetbase(single) is concise and is slightly inferior to sev-

eral state-of-the-art methods. We emphasise that our training

strategy is intended for multi-domain learning for crowd

counting, rather than increasing the performance of a particular

dataset. When applied with IDK strategy, DCANet (LI , single)

attains performance gains of 2.2, 0.9, 9.1, 20.4 and 1.5 MAE

decreases on these five datasets, respectively. We note that

gains by introducing our IDK become larger with the more

diverse scene variance and head scales, etc. This also indicates

the rationale of our IDK in tackling large variances among

the observed domains and even among the unseen domains.

Besides, when we substitute DCANet as DM-Count [29],

similar performance gains for DDK/IDK training strategies

are observed, indicating the effectiveness and robustness of

our method.
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TABLE V
COMPARISON OF DIFFERENT MODELS OF ITERATIVE RE-SPLITTING. UCF 50 AND WE’10 WORK AS THE UNSEEN DOMAINS IN TESTING AND ARE

USED FOR EVALUATING GENERALIZATION PERFORMANCE.

Method

Observed domains Unseen domains
SHA SHB QNRF UCF 50 WE’10

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

DCANetbase 62.5 99.3 9.4 14.8 95.9 170.6 330.7 453.5 15.9

DCANet (LD) 59.0 99.2 7.9 12.9 93.8 164.9 345.1 460.5 17.3

DCANet (LI ) 58.3 99.3 7.2 11.8 88.9 160.2 309.6 431.4 12.4

DCANet (sub=5, irs=0) 56.8 97.6 6.6 10.5 86.2 153.3 295.0 413.9 11.1

DCANet (sub=5, irs=1) 56.2 97.0 6.4 10.2 85.1 149.7 288.5 400.2 10.4
DCANet (sub=5, irs=2) 56.1 96.7 6.6 10.7 85.7 151.1 293.6 398.5 10.7

TABLE VI
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ARTS TRAINED ON SINGLE DATASET.

Method
SHA SHB QNRF UCF 50 WE’10

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MCNN [3] 110.2 173.2 26.4 41.3 277 - 377.6 509.1 11.6

Switch-CNN [23] 90.4 135.0 21.6 33.4 228 445 318.1 439.2 9.4

CP-CNN [24] 73.6 112.0 20.1 30.1 - - 298.8 320.9 8.9

CSRNet [35] 68.2 115.0 10.6 16.0 - - 266.1 397.5 8.6

SANet [37] 67.0 104.5 8.4 13.6 - - 258.4 334.9 8.2

PCC [61] 73.5 124.0 11.0 19.0 - - 240.0 315.5 7.2

CANet [12] 62.3 100.0 7.8 12.2 107 183 212.2 243.7 7.2

ADCrowdNet [62] 63.2 98.9 8.2 15.7 - - 266.4 358.0 7.3

SPN [63] 64.2 98.4 7.2 11.1 104.7 173.6 188.4 315.3 -

COBC [64] 62.8 102.0 8.6 16.4 118 192 239.6 322.2 8.2

MAN [65] 61.8 100.0 8.6 13.3 - - 245.4 349.3 8.3

DSSINet [13] 60.6 96.0 6.9 10.3 99.1 159.2 216.9 302.4 6.7

RPNet [32] 61.2 96.9 8.1 11.6 - - - - 8.2

Bayesian Loss [28] 62.8 101.8 7.7 12.7 88.7 154.8 229.3 308.2 -

LibraNet [66] 55.9 97.1 7.3 11.3 88.1 143.7 181.2 262.2 -

DM-Count [29] 59.7 95.7 7.4 11.8 85.6 148.3 211.0 291.5 -

ADSCNet [67] 55.4 97.7 6.4 11.3 71.3 132.5 198.4 267.3 -

DCANetbase (single) 61.4 108.8 8.7 15.4 99.2 177.7 203.6 318.1 7.0

DCANet (LD , single) 60.6 101.0 8.1 13.9 93.3 168.4 191.2 303.7 6.7

DCANet (LI , single) 59.2 94.4 7.8 12.3 90.1 150.4 183.2 260.1 6.5

DM-Countbase (single) 59.4 96.3 7.3 11.6 85.1 150.5 207.4 288.0 6.8

DM-Count (LD , single) 58.0 96.7 6.7 11.1 81.9 146.6 187.3 294.1 6.3

DM-Count (LI , single) 57.5 94.9 6.5 10.6 81.0 147.0 182.6 268.9 6.1

TABLE VII
MAES OF OUR MODEL WITH DIFFERENT MODULES AND TRAINING STRATEGIES.

Network component and training strategy Evaluation dataset

Multi-dilation Channel-attention Extra Observed domain Unseen domain
Module Module Supervision SHA SHB QNRF UCF 50 WE’10

63.4 10.8 97.1 347.6 16.3

� 62.5 9.4 95.9 330.7 15.9

� Self-attention [54] 61.4 8.5 95.6 327.6 15.2

� Simple-attention 61.9 8.3 96.1 322.0 14.7

� Simple-attention DDK 59.0 7.9 93.8 345.1 17.3

� Simple-attention IDK 58.3 7.2 88.9 309.6 12.4

F. Ablation Study
1) Effectiveness of the modules in DCANet: In Table VI-

I, different modules of DCANet and two proposed train-

ing strategies are respectively evaluated. We note that our

CAMD module is comprised of a multi-dilation module and

a simplified channel-attention module. From the results, it

can be observed that the multi-dilation module improves the

performance. From the 3rd and 4th rows in Table VII, it is

seen that our simplified channel-attention module achieves

similar performance with original attention (under the settings

of SENet [54] with a ratio r = 4). Besides, both DDK and

IDK training strategies outperform conventional attention /
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TABLE VIII
PERFORMANCE OF SINGLE DILATION IN CHANNEL ATTENTION MODULE.

Network Loss SHA SHB QNRF

Single-dilation Channel Attention Module

DCANet (rate = 2)

Lden 63.3 10.3 98.5

LD 60.4 9.4 96.9

LI 60.0 8.6 93.6

DCANet (rate = 4)

Lden 62.7 9.4 95.2

LD 59.6 8.7 94.0

LI 58.7 7.7 90.5

DCANet (rate = 6)

Lden 63.0 9.1 97.0

LD 60.3 8.0 95.3

LI 59.5 7.4 91.2

DCANet (rate = 8)

Lden 64.1 9.6 99.2

LD 61.1 8.6 97.5

LI 60.3 8.1 93.1

Multi-dilation Channel Attention Module

DCANet

Lden 62.5 9.4 95.9

LD 59.0 7.9 93.8

LI 58.3 7.2 88.9

simple-attention module in observed domains, which indicates

the superiority of our training strategies. For unseen domains,

DDK strategy narrows the overall distribution of attention

estimation, leading to performance degradation in unseen do-

main UCF 50 and WE’10. However, our IDK predicts image-

specific channel attention for each input, thus delivering better

performance in both observed domains and unseen domains.

2) Multi-dilation v.s. Single-dilation Channel Attention
Module in DCANet: To enhance the modeling of scale vari-

ances, we adopt multi-dilation channel attention module in our

DCANet, instead of single-dilation channel attention module.

We compare DCANet with DCANet (rate = r), where

DCANet (rate = r) represents sharing the same dilation rate

r across all the branches in CAMD. The comparison results

are presented in Table VIII. It is seen that when adopting

single-dilation setting, the performance degrades moderately,

which is mainly due to the lower capacity in modeling the

scale variances.

3) IDK Training on the Baseline Model of DCANet: Sunce

domain kernels are learnable in IDK training, it is intuitive to

exploit the possibility of directly performing IDK training on

DCANetbase. Table IX demonstrates the corresponding perfor-

mance which is termed as DCANet (LI w/o DDK). It is seen

that the performance of DCANet (LI w/o DDK) only degrades

slightly in comparison to DCANet (LI ) with only 0.2, 0.1 and

0.8 MAE increases on the datasets. Such observation validates

the flexibility of IDK training and motivates us to directly

perform IDK training in conducting iterative re-splitting in

Table V.

4) Initialization of IDK: From Eqn. (9), we know that ki is

initialized as the linear combination of all the dataset domain

kernels kDm
. Due to the fact that kDm

is learnable in IDK

strategy, it is natural to come up with this thought: can the

domain kernels kDm be initialized randomly in IDK training?

To this end, we conduct the experiments by continuing training

baseline model DCANetbase by IDK strategy with random

TABLE IX
MAES OF IDK STRATEGY DIRECTLY TRAINING ON THE BASELINE MODEL

OF DCANET.

Method SHA SHB QNRF

DCANetbase 62.5 9.4 95.9

DCANet (LD) 59.0 7.9 93.8

DCANet (LI ) 58.3 7.2 88.9

DCANet (LI w/o DDK) 58.5 7.3 89.7

TABLE X
MAES OF IDK STRATEGY WITH RANDOM INITIALIZED DOMAIN KERNELS.

Method SHA SHB QNRF

DCANetbase 62.5 9.4 95.9

DCANet (LD) 59.0 7.9 93.8

DCANet (LI ) 58.3 7.2 88.9

DCANet (k = 3) 58.8 7.8 91.4

DCANet (k = 4) 58.1 7.2 88.5

DCANet (k = 5) 57.7 6.9 87.7
DCANet (k = 6) 57.9 6.9 88.2

TABLE XI
PERFORMANCES OF THE MODELS WHEN USING GCC-SMALL DATASET.

Method SHA SHB QNRF GCC-small

DCANetbase (single) 61.4 8.7 99.2 58.4

DCANetbase 66.2 12.8 110.5 63.6

DCANet (LD) 63.2 9.1 103.6 56.6

DCANet (LI ) 60.1 8.2 93.0 54.8

initialized domain kernels, as shown in Table X. In order to

make comparison with Table IV in Sec. IV-D3, the number of

domain kernels is also set to 3, 4, 5, 6, respectively. DCANet

(k=m) indicates that there are m randomly initialized domain

kernels when performing IDK training. When m=3, DCANet

(k = 3) outperforms DCANet (LD), indicating the effective-

ness of IDK strategy. It is observed that when m > 3, the

performances of DCANet (k=m) surpass DCANet (LI ), but

are still inferior to the counterparts of “DCANet (sub = m)”

shown in Table IV. This reveals that a better initialization (e.g.,

clustering by impact scores) further improves the performance.

Even with random initialized domain kernels, we emphasize

that DCANet (k = 4) still achieves significant performance

gains with MAE 4.8, 2.5 and 8.2 decreases, comparing with

DCANetbase on the datasets.

5) Evaluation of IDK on Larger Domain Gaps: To further

evaluate the robustness of IDK strategy on different domains,

we select a synthetic dataset GCC [18] which contains up to

15, 212 images. In order to make training more efficient, we

sample the GCC-small dataset from GCC dataset. Specifically,

we randomly select 1, 489 images from the whole dataset,

and split them into two parts: 1, 191 training images and

298 testing images. We first train and evaluate DCANetbase
(single) on GCC-small dataset. Then the training images of

GCC-small are merged into the multi-domain dataset, and train

DCANetbase, DCANet (LD) and DCANet (LI ), as illustrated

in Sec. III-C. It is noted that the new multi-domain dataset

consists of 300 ShanghaiTech A images, 400 ShanghaiTech
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GT: 304 GT:1191 GT:479

Est: 257.7 Est: 991.6 Est: 414.2

Est/GT=0.85 Est/GT=0.83 Est/GT=0.86

Fig. 9. Failure cases: samples with top-3 descending ΔP values.

B images, 1, 201 QNRF images and 1, 191 synthetic images.

In this case, there ar larger domain gaps among these four

datasets, since ShanghaiTech A prefers congested scenes,

ShanghaiTech B images are sparse and are street views, UCF-

QNRF images tend to be highly-congested and with compli-

cated backgrounds, and GCC-small images are synthetic.

In Table XI, it is seen that DCANetbase shows inferior

performance to DCANetbase (single) over all the datasets.

Such performance drop is attributed to the large portion of

synthetic images and large domain gaps between the datasets.

This indicates that it is not trivial to obtain satisfying result

for multiple domains by directly training on the multi-domain

data. However, DCANet (LD) and DCANet (LI ) outperform

DCANetbase consistently. Specifically, DCANet (LI ) delivers

the best performance with 60.1, 8.2, 93.0, 54.8 MAE on

ShanghaiTech A, ShanghaiTech B, UCF-QNRF and GCC-

small, with the decreases of 9.2%, 35.9%, 15.8%, 13.8% MAE

on these datasets. Such observations indicate the effectiveness

of our proposed training strategies.

6) Failure Cases: For each image I , we define a new metric

named as improvement rate ΔP = |P̂IDK−P gt|
|P̂base−P gt|+ε

, where

P gt is the ground-truth count, P̂base denotes the predicted

count by DCANetbase, P̂IDK represents the estimated count

by DCANet (LI ). The parameter is set as ε = 1e−3. We

rank the ΔP in the descending order and select the top-3
images as failure cases. Fig. 9 shows the results. It is seen

that most of the images are in low illumination or grey images,

which apparently act as “outliers” of the data distribution. Our

method can also give satisfying estimated density maps and

counts for these failure cases, which indicates the effectiveness

of our method.

V. CONCLUSION

In this paper, we proposed a novel domain-guided channel

attention network (DCANet) for multi-domain crowd count-

ing, where dataset-level domain kernel (DDK) supervision and

image-level domain kernel (IDK) supervision are proposed.

Our DCANet is a very concise framework for multi-domain

crowd counting. DDK strategy aims at predicting channel

attention in view of the overall domain representation (i.e.,

DDK), which boosts the performance in multiple domains.

To improve the robustness of DCANet, IDK strategy further

extends static DDK to adaptive IDK and encourages DCANet

to predict image-specific channel attention. Experiments show

that both DDK and IDK strategies improve the performance in

multiple domains, while IDK further boosts the generalization

and robustness of DCANet in unseen domains.
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