
Bringing Events into Video Deblurring with Non-consecutively Blurry Frames
Supplementary Material

In this supplementary file, we provide the details of network architecture, more results of ablation study, more results on
benchmark datasets and real-world blurry videos.

1. Network Architecture
1.1. Architectures of D2Nets

D2Nets includes BiLSTM Detector in FDET to detect blurry frames in a video, FBRN to restore blurry frame guided by
detected NSFs and FTCE to enhance the temporal consistency of restored video. EFM is proposed to better utilize rich
boundaries in events for facilitating deblurring, which can be embeded in FBRN and FTCE. We first formulate EFM, and then
detail the network architecture.

1.1.1 Event Fusion Module (EFM)

To reduce the computational cost of EFM, we suggest to incorporate EFM into the bottleneck of encoder-decoder, which can
be formulated as
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where ⊗ is matrix multiplication, FEncoder is convolutional Encoder, FEvent is convolutional module that can guarantee e has
the same spatial dimension with z,R is the reshape operation that changes dimension from (c, h, w) to (c, h ∗ w), andR′ is
the reshape operation that changes dimension from (c, h∗w) to (c, h, w). z is features of frames from latent space of encoder,
and e is the feature of events Ei extracted using CNN along with downsampling. m is a reweighting map which can be used
to facilitate deblurring by matrix multiplication with the features of frames. We, Wz and Wv are learnable weight matrices.
Finally, y is the input of decoder to recover latent sharp frame.

1.1.2 Architecture details

D2Nets includes three parts: FDET, FBRN and FTCE. Since FTCE shares the same architecture with FBRN, we only present
architecture details of FBRN. BiLSTM detector in FDET is detailed in Table s1, FBRN is detailed in Table s3. FEvent is detailed
in Table s4, which can be embeded into the bottleneck of FBRN or FTCE.

Table s1. The architecture of BiLSTM detector in FDET. Convolution is with the form Conv(input channel, output channel, kernel size,
stride, padding size) and fully connected layer is with the form Linear(input channel, output channel).

Input A sequence of frames (indim = 3) or events (indim = 20);
Layer fin Conv(indim,3, 3, 1, 1); LeakyReLU;
Layer fextractor ResNet-152;
Layer fc1 Linear(2048, 512);
Layer frec BiLSTM;
Layer fc2 Linear(1024, 1); Sigmoid;
Output A sequence of probabilities of inputs being sharp frames;



Table s2. The basic component ResBlock. Convolution is with the form Conv(input channel, output channel, kernel size, stride, padding
size). feats is the number of channels from previous layer.

Input Feature maps from the previous layer;
Layer 1 Conv(feats, feats, 3, 1, 1); LeakyReLU;
Layer 2 Conv(feats, feats, 3, 1, 1);

Add(Input, Layer2);

Table s3. The architecture of frec in FBRN, while we omit the arthtecture of fflow due to its exactly same architecture with PWC-Net [5].
Convolution is with the form Conv(input channel, output channel, kernel size, stride, padding size) and deconvolution is with the form
ConvTrans(input channel, output channel, kernel size, stride, padding size).

Input: Front NFS G−
i , blurry frame Bi, near NFS G+

i
Frames aligning:

Warping NSFs aligned to blurry frame Bi using fflow.
Output: the warped frames I−

i and I+
i

Concatenate(I−
i , Bi, I+

i )
Encoder:

Layer fin Conv(9, 32, 3, 1, 1); LeakyReLU; 3 ResBlocks;
Layer fen1 Conv(32, 64, 3, 2, 1); LeakyReLU; 3 ResBlocks;
Layer fen2 Conv(64, 128, 3, 2, 1); LeakyReLU; 3 ResBlocks;

Bottleneck:
Layer frec LSTM;

Decoder:
Layer fde2 3 ResBlocks; ConvTrans(128, 64, 3, 2, 1); LeakyReLU;
Layer fde1 3 ResBlocks; ConvTrans(64, 32, 3, 2, 1); LeakyReLU;
Layer fout 3 ResBlocks; Conv(32, 3, 3, 1, 1);
Output: The latent sharp frame Îi

Table s4. The architecture of FEvent. Convolution is with the form Con.(input channel, output channel, kernel size, stride, padding size).
UnPS(factor) is a reverse operation of pixel-shuffle to perform downsampling, and we use factor = 2 to guarantee that the feature size is
same with z.

Input Events Ei;
Layer fevent in1 Conv(20,32,1,1,0); LeakyReLU;
Layer fevent in2 Conv(32,32,3,2,1); LeakyReLU;
Layer fups UnPS(2);
Output Events feature e;



2. Ablation Study
2.1. Effects of Components in D2Nets

Here, we present the deblurring results by D2Nets and its variants. One can see that full D2Nets* obtain visually favorable
results as shown in Fig. s1.

(a) Blurry Franmes

(b) Results by FTCE

(c) Results by FDET+FBRN

(d) Results by FDET+FBRN + FTCE

(e) Results by Full D2Nets*
Figure s1. Visual comparison of component analysis on GoPro dataset. The first row is blurry frames, and (b)∼(e) correspond to the results
of 1 ∼ 4 rows of Table 4 in the manuscript.

2.2. Effectiveness of Event Fusion Module
In Fig. s2, we visualize the feature map in bottleneck with and without our EFM, respectively.

Color scale Heat map w/o EFM Heat map w/ EFM

Blurry image Deblurring result w/o EFM Deblurring result w/ EFM
Figure s2. Effect of EFM. The feature map reweighted by our EFM pays more attention on blurry boundaries, which benefits the sharp
frame restoration.



3. More Results on Benchmark Datasets
3.1. More Results on GoPro Dataset [2]

The results by DMPHN [6] and CDVD-TSP [3] cannot fully remove severe blur, while our results are more visually
plausible.

Blurry frames

Results by DMPHN

Results by CDVD-TSP

Results by our D2Nets*
Figure s3. More results on GoPro dataset. From 1 to 4 rows are blurry frames, DMPHN [6], CDVD-TSP [3] and D2Net*, respectively.



3.2. More Results on Blur-DVS Dataset [1]

The results by DMPHN [6] and CDVD-TSP [3] still have serve blur.

Blurry frames

Results by DMPHN

Results by CDVD-TSP

Results by D2Nets*
Figure s4. More results comparison on Blur-DVS dataset. From 1 to 4 rows are Blurry frames, DMPHN [6], CDVD-TSP [3] and D2Net*,
respectively.



3.3. More Results on Severe Blurry Frames

We present more results on severe blurry frames with events from fast-motion subset of Blur-DVS dataset.

The left is blurry frames, the middle is the results by BHA [4], and the right is the results by our D2Nets*
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