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Abstract

Recently, video deblurring has attracted considerable
research attention, and several works suggest that events
at high time rate can benefit deblurring. Existing video
deblurring methods assume consecutively blurry frames,
while neglecting the fact that sharp frames usually appear
nearby blurry frame. In this paper, we develop a princi-
pled framework D2Nets for video deblurring to exploit non-
consecutively blurry frames, and propose a flexible event fu-
sion module (EFM) to bridge the gap between event-driven
and video deblurring. In D2Nets, we propose to first de-
tect nearest sharp frames (NSFs) using a bidirectional LST-
M detector, and then perform deblurring guided by NSFs.
Furthermore, the proposed EFM is flexible to be incorpo-
rated into D2Nets, in which events can be leveraged to no-
tably boost the deblurring performance. EFM can also be
easily incorporated into existing deblurring networks, mak-
ing event-driven deblurring task benefit from state-of-the-
art deblurring methods. On synthetic and real-world blurry
datasets, our methods achieve better results than competing
methods, and EFM not only benefits D2Nets but also signif-
icantly improves the competing deblurring networks.

1. Introduction
Videos have played the crucial role in computer vision

field, and blur is commonly inevitable due to the movement
of camera or moving objects in the capturing scene. To rem-
edy the adverse effects of blur, video deblurring has drawn
considerable research attention in many applications, e.g.,
SLAM [12], 3D reconstruction [29] and tracking [36]. In
recent years, event camera [3,22], a novel sensor for record-
ing intensity changes of the capturing scene at microsecond
level, has been developed, and events with high time rate
are also suggested to facilitate deblurring [8, 25].

Both video deblurring [7,9,19] and event-driven deblur-

∗Corresponding author: rendongweihit@gmail.com

Blurry Frame

DMPHN [37]

STFAN [39]

Corresponding Events

CDVD-TSP [19] D2Nets*
Figure 1. Deblurring results by our D2Nets*, state-of-the-art im-
age deblurring DMPHN [37] and video deblurring STFAN [39]
and CDVD-TSP [19].

ring [8,20,24,25,25,33] have achieved unprecedented pro-
gresses, but they still have limitations. On the one hand,
existing video deblurring networks are usually based on the
assumption of consecutively blurry frames in a video, and
design CNN-based [4, 11, 19, 30, 35, 38] and RNN-based
[7, 18, 32] architectures, among which encoder-decoder ar-
chitecture is the most popular choice to act as the the basic
backbone. However, it is a common fact that blur does not
consecutively occur in videos, i.e., some frames in a blur-
ry video are extremely sharp and clean [27]. These sharp
frames actually can be exploited to facilitate the restoration
of blurry frames, but they are indistinguishably processed in
existing video deblurring methods, also adversely yielding
sharp textures lost. On the other hand, event-driven restora-
tion methods heavily rely on the employment of events,
where various architectures such as BHA [20], CIE [28]
and EDMD [8] are designed. In these methods, the modules
for exploiting events are not easy to cooperate with existing
image and video deblurring methods, thus restraining the
development of principled framework for video deblurring



and event-driven deblurring.
In this paper, we first develop a principled framework

(i.e., Detect&Deblur Netwotks, D2Nets) to leverage non-
consecutively blurry frames, and then propose an event fu-
sion module (EFM) to bridge the gap between event-driven
and video deblurring. First, our D2Nets consists of three
steps: (i) We propose to distinguish sharp frames and blurry
frames using a bidirectional LSTM (BiLSTM) [6] as shown
in Fig. 2, based on which two nearest sharp frames (NS-
Fs) can be found for a blurry frame in the front and rear
directions. BiLSTM can take as input either frames or their
corresponding events. (ii) As shown in Fig. 3, blurry frames
can then be restored to reconstruct latent sharp video frames
using an encoder-decoder deblurring backbone, where NS-
Fs are employed to guide the deblurring of a blurry frame
instead of its neighboring frames. (iii) We further suggest
to enhance the temporal consistency of restored video by
a post-processing step, which is also beneficial to possibly
surviving blurry frames due to detection errors by BiLSTM.

Second, the proposed EFM simultaneously exploits ben-
efits from events and adjacent frames, and can be incorpo-
rated into the latent space of encoder-decoder architecture.
EFM can then be incorporated into both steps of blurry
frames restoration and temporal consistency enhancement
in D2Nets, bridging the gap between event-driven and video
deblurring, resulting in D2Nets*. Moreover, our EFM can
be incorporated into existing state-of-the-art deblurring net-
works, e.g., DMPHN [37], STFAN [39] and CDVD-TSP
[19], making event-driven deblurring can benefit from these
state-of-the-art image and video deblurring methods. As
shown in Fig. 1, existing video deblurring methods can-
not fully remove severe blur, while our D2Nets* is able to
restore more visually plausible deblurring result.

Experiments have been conducted on two benchmark
datasets, including GoPro dataset [17] and Blur-DVS
dataset [8] captured by DAVIS240C camera [3]. By exploit-
ing NSFs, sharp textures from NSFs can better facilitate re-
constructing latent clean frames, leading to notable gains
by our D2Net over state-of-the-art deblurring methods. The
proposed EFM not only benefits our D2Nets, but also sig-
nificantly improves competing methods when collaborating
with events to tackle video deblurring.

The contributions of this work are three-fold:

• A principled deblurring framework D2Nets is devel-
oped to exploit nearest sharp frames when restoring
blurry frames in a non-consecutively blurry video.

• An event fusion module EFM is proposed to better u-
tilize beneficial information from events to facilitate
deblurring.

• Our EFM has also been incorporated into existing im-
age and video deblurring methods for tackling event-
driven video deblurring. Extensive experiments are

Figure 2. The architecture of BiLSTM detector for distinguish-
ing sharp frames from blurry frames. The BiLSTM detector takes
5 adjacent frames as input, which can be either video frame se-
quence Bi−2, · · · ,Bi, · · · ,Bi+2 or their corresponding events
Ei−2, · · · ,Ei, · · · ,Ei+2.

conducted to validate the effectiveness of D2Nets and
EFM for synthetic and real-world blurry videos.

2. Related Work
In this section, we survey relevant works including im-

age and video deblurring, and event-driven deblurring.

2.1. Image and Video Deblurring

Due to the success of encoder-decoder architecture in
low-level vision field [14, 21], encoder-decoder is usually
adopted as the most popular basic backbone in single image
[4,11,32] deblurring and video deblurring [7,18,19,30,35,
39]. For single image deblurring, Tao et al. [32] proposed
a scale-recurrent network in a “coarse-to-fine” scheme to
extract multi-scale features from blurry image. Aittala et
al. [1] designed an encoder-encoder architecture to treat all
frames in the burst in an order-independent manner. Zhang
et al. [37] presented a deep hierarchical multi-patch network
inspired by spatial pyramid matching to deal with blurry
images. Recently, Ren et al. [26] adopted an asymmetric
autoencoder and a fully-connected network (FCN) to solve
image deblurring in a self-supervised manner.

For video deblurring, Kim et al. [7] develop a spatial-
temporal recurrent network with a dynamic temporal blend-
ing layer for latent frame restoration. To better leverage s-
patial and temporal information, Kim et al. [9] introduced
an optical flow estimation step for aligning and aggregating



Figure 3. The flowchart of FBRN for restoring blurry frame Bi with its NSFs G−
i and G+

i . FBRN consists of two steps: warping NSFs
aligned to Bi using falign, and reconstructing latent frame Îi using frec.

information across the neighboring frames to restore laten-
t clean frame. In [34], Wang et al. developed deformable
convolution in pyramid manner to implicitly align adjacent
frames for better leveraging temporal information. Recent-
ly, Pan et al. [19] proposed to simultaneously estimate the
optical flow and latent frames for video deblurring with the
help of temporal sharpness prior. The estimated optical flow
from intermediate latent frames as the motion blur informa-
tion is fed back to the reconstruction network to generate
final sharp frames.

Existing video deblurring methods assume consecutively
blurry frames, which is commonly inconsistent with practi-
cal blurry videos. Ren et al. [27] found that some frames
in a video with motion blur are sharp, and proposed to fit
deblurring model to the test video. In this work, we pro-
pose a principled framework to better exploit sharp frames
for video deblurring with non-consecutively blurry frames.

2.2. Event-driven Video Deblurring

Event cameras [3, 22] are novel sensors that record in-
tensity changes of the scene at microsecond level with s-
light power consumption, and have potential applications in
a variety of computer vision tasks, e.g., visual tracking [15],
stereo vision [2] and optical flow estimation [13]. A relat-
ed research branch is to explore the pure events to restore
high frame rate image sequences [16, 25]. Recently, Pan et
al. [20] formulated event-driven motion deblurring as a dou-
ble integral model. Yet, the noisy hard sampling mechanism
of event cameras often introduces strong accmulated noise
and loss of scene details. Jiang et al. [8] proposed a sequen-
tial formulation of event-based motion deblurring, then un-
folded its optimization steps as an end-to-end deep deblur-
ring architecture. The employment of events is complicat-
ed, and existing methods leverage events in different ways
as mentioned in [5]. Moreover, events modules in these
methods are not trivial to incorporate into video deblurring

networks, making it infeasible to benefit from state-of-the-
art video deblurring methods. In this work, we propose an
event fusion model, which can be easily incorporated into
encoder-decoder architecture in existing image and video
deblurring networks, bridging the gap between event-driven
and video deblurring.

3. Proposed Method
In this section, we first present our principled Detec-

t&Deblur (D2Nets) framework for tackling video deblur-
ring with non-consecutively blurry frames, and then elabo-
rate the key components of D2Nets in details.

3.1. Principled Framework of D2Nets

For a blurry frame Bi, the principled framework of
D2Nets can be formally presented as three steps,

G−i ,G
+
i = FDET(Bi−N , · · ·Bi, · · ·Bi+N ),

Îi = FBRN(G
−
i ,Bi,G

+
i ),

Ii = FTCE(Îi−1, Îi, Îi+1).

(1)

In D2Nets: (i) FDET detects nearest sharp frames (NSFs)
G−i and G+

i from N adjacent frames in the front and rear
orientations, respectively. (ii) FBRN restores blurry frame
guided by detected NSFs, which consists of an alignment
module falign for warping two NSFs G−i and G+

i aligned to
Bi and an encoder-decoder frec to reconstruct latent sharp
frame Îi by fusing features of Bi, G−i and G+

i . (iii) FTCE
has the same two modules falign and frec. FTCE aims to fur-
ther enhance the temporal consistency of frames {Îi}Mi=1

and obtain the final deblurring video {Ii}Mi=1, where M is
the total number of frames of the input video. The overall
procedure of D2Nets are presented in Alg. 1. The details
of network architectures in FDET, FBRN and FTCE can be
found in supplementary file.



Moreover, we propose an event fusion module (EFM)
to incorporate events into D2Nets. In FDET, it is straight-
forward to substitute input frames as their corresponding
events Ei−N , · · · ,Ei, · · · ,Ei+N . In FBRN and FTCE, our
EFM are flexible to incorporate into the encoder-decoder
architectures. Besides, our EFM can also be incorporated
into existing image and video deblurring networks, making
them applicable to handle event-driven deblurring.

3.2. Detecting Blurry Frames and NSFs

BiLSTM Detector: We treat detecting blurry frames
in a video as a binary classification task. Considering the
temporal information in video, we in this paper propose to
adopt bidirectional LSTM (BiLSTM) [6] to classify sharp
frames and blurry frames, by which correlations of adja-
cent frames in both forward and backward directions are
leveraged. The architecture of BiLSTM detector is visual-
ized in Fig. 2. For a sequence of video frames, BiLSTM
detector first extracts features using ResNet-152, and then
transforms features to a 512-dimension vector as the input
to BiLSTM. Finally, Sigmoid function is used to normalize
the outputs of BiLSTM in the range [0,1], indicting a frame
is blurry or sharp.

The consecutive frames in a blurry video are denoted
by {Bi}Mi=1. Then, the output from detector is denoted by
{oi}Mi=1, in which oi is the probability of Bi being a sharp
frame,

{oi}Mi=1 = fbilstm
(
{Bi}Mi=1

)
, (2)

where fbilstm indicates the BiLSTM detector. To make the
training easier, we split the video sequence into segments,
each of which contains 5 frames. BiLSTM is trained by
minimizing the binary cross-entropy loss function

Lbilstm = −(ogti log(oi) + (1− ogti ) log(1− oi)), (3)

where ogti denotes the true label of i-th frame, i.e., ogti = 1
when Bi is a sharp frame, otherwise ogti = 0.

Detecting NSFs: We binarize the outputs of BiLSTM
by threshold ε = 0.5. A frame Bi is blurry, if oi = 0. Then
for a given blurry frame Bi, we can detect two NSFs G−i
and G+

i from its N adjacent frames in the front and rear,
respectively. If NSFs cannot be found, we simply set NSF-
s G−i and G+

i as the neighboring frames Bi−1 and Bi+1,
respectively. In this work, we empirically set the search-
ing range N = 7. This is because sharp frames beyond
this range may have significant distinctions from the scene
content in Bi, and thus are not suitable to act as NSFs.

3.3. Blurry Frame Restoration with NSFs

After detecting two NSFs, blurry frame Bi can then be
restored by FBRN. It is a natural strategy to direct take
(G−i ,Bi,G

+
i ) as input in reconstruction network. How-

ever, there usually exists considerable temporal motion be-

tween Bi and its NSFs G−i and G+
i . Therefore, we imple-

ment FBRN as two steps, as shown in Fig. 3, i.e., warping
NSFs aligned to blurry frame Bi using falign and fusing their
features to reconstruct latent frame using frec.

As for falign(G
−
i ,Bi,G

+
i ), we use PWC-Net [31] as the

optical flow estimation algorithm fflow to provide motion
composition,

u→i = fflow
(
Bi,G

−
i

)
, I−i = G− (x+ u→i)

ui← = fflow
(
Bi,G

+
)
, I+

i = G+ (x+ ui←)
(4)

where u→i and ui← are optical flow G−i → Bi and Bi ←
G+

i , respectively. The network fflow is reused for two NSFs.
Similar to [31], we use the bilinear interpolation to obtain
the warped frames I+

i and I−i . Then blurry frames can be
restored by

Îi =

{
frec
(
I+
i ,Bi, I

−
i

)
, if oi = 0

Bi, if oi = 1
(5)

where frec is an encoder-decoder with LSTM to reconstruct
the clean frame Îi.

As for training the parameters of fflow and frec, we simul-
taneously update both of them, by minimizing the `1-norm
loss function

LBRN =

K∑
i=1

∥∥FBRN
(
G−i ,Bi,G

+
i

)
− Igt

i

∥∥
1
, (6)

where K is the number of detected blurry frames.

3.4. Temporal Consistency Enhancement

Using FBRN, blurry frames are usually restored with-
out considering their neighboring frames, and the temporal
consistency of whole video may be interfered. To remedy
this problem, we further propose a temporal consistency en-
hancement network FTCE. In general, FTCE shares the same
two steps with FBRN, including frames alignment module
and reconstruction module. The only distinction lies in the
inputs of falign and frec,

(I−i , I
+
i ) = falign(Îi−1, Îi, Îi+1),

Ii = frec

(
I−i , Îi, I

+
i

)
,

(7)

by which all the frames in latent video by FBRN are en-
hanced by considering their neighboring frames. FTCE
not only can enhance the temporal consistency of restored
video, but also will benefit possibly surviving blurry frames
due to detection errors by BiLSTM, further improving the
deblurring quality.

As for learning the parameters of FTCE, we also adopt
`1-norm loss function

LTCE =

M∑
i=1

∥∥∥FTCE

(
Îi−1, Îi, Îi+1

)
− Igt

i

∥∥∥
1
. (8)



Algorithm 1 D2Nets (and D2Nets*) for Video Deblurring
Input: Blurry video with M frames {Bi}Mi=1 (and optional

events {Ei}Mi=1)
Output: Deblurring video {Ii}Mi=1

1: Initialize intermediate results {Îi}Mi=1 as {Bi}Mi=1

2: // Lines 3-4: FDET detects blurry frames and NSFs
3: Detect blurry frames {Bj}Kj=1 using BiLSTM.
4: Find NSFs G−

j and G+
j for Bj , resulting in the set

{G−
j ,Bj ,G

+
j }

K
j=1.

5: // Lines 6-9: FBRN restores detected blurry frames
6: for j = 1 : K do

7:
(I−

j , I
+
j ) = falign(G

−
j ,Bj ,G

+
j )

Îj = frec
(
I+
j ,Bj , I

−
j

)
8: Substitute corresponding frame in {Îi}Mi=1 as Îj
9: end for

10: // Lines 11-13: FTCE enhances temporal consistency, and for
the index exceeding range [1,M ], we simply repeat B1 or
BM .

11: for i = 1 :M do

12:
(I−

i , I
+
i ) = falign(Îi−1, Îi, Îi+1)

Ii = frec

(
I+
i , Îi, I

−
i

)
13: end for
14: return Deblurring video frames {Ii}Mi=1

3.5. Event Fusion Module

As discussed in FDET, the events can be taken as input
of BiLSTM detector to better distinguish sharp and blur-
ry frames. We take one step further to leverage events in
FBRN and FTCE, since events encode richer temporal infor-
mation which is crucial for video deblurring task. For an
event camera, given a blurry frame Bi, its corresponding
stream of events Ei are available. Each event has the form
(t, x, y, p), which records intensity changes for coordinates
(x, y) at time t, and polarity p = ±1 denotes the increase or
decrease of intensity change. In this work, we transform the
events stream into a tensor with 20 channels for each frame.

We propose EFM to better utilize rich boundaries in
events for facilitating deblurring. Formally, our EFM can
be presented as

m = SoftMax
(
eTW T

e Wzz
)
, (9)

where We and Wz are learnable weight matrices, z is fea-
tures of frames from latent space of encode-decoder, and e
having same dimension with z is the feature of events E ex-
tracted using CNN along with downsampling. In EFM, m
is a reweighting map which can be used to facilitate deblur-
ring by matrix multiplication with the features of frames.
EFM can be regarded as a kind of attention, where the
reweighting map can guide the decoders mainly focus on
specific features beneficial to deblurring. EFM is flexible to
embed into the latent space of encoder-decoder like archi-
tecture in both FBRN and FTCE. Since PWCNet also adopts

encoder-decoder like architecture, EFM can also be incor-
porated into fflow to facilitate optical flow estimation. When
cooperating with EFM, D2Nets is denoted by D2Nets*.

Moreover, considering that state-of-the-art deblurring
methods, e.g., DMPHN [37] for image deblurring, STFAN
[39] and CDVD-TSP [19] for video deblurring, adop-
t encoder-decoder as their basic backbone, EFM can be eas-
ily incorporated into these methods, making event-driven
deblurring benefit from state-of-the-art image and video de-
blurring methods.

4. Experiments
In this section, we evaluate our D2Nets on two dataset-

s, including GOPRO [17] and Blur-DVS [8]. D2Nets is
compared with state-of-the-art image deblurring method
DMPHN [37], and video deblurring methods STFAN [39]
and CDVD-TSP [19]. To evaluate their performance for
event-driven deblurring, we apply our EFM into DMPH-
N, STFAN, CDVD-TSP and our D2Nets, notated as DM-
PHN*, STFAN*, CDVD-TSP* and D2Nets*, respectively.
As for the methods specifically developed for event-driven
deblurring, it is infeasible to fairly compare D2Nets* with
them quantitatively, since they usually do not release train-
ing codes. Therefore, we compare D2Nets* with only one
event-based method BHA [20] qualitatively, when handling
real-world blurry frames. Our source code is available at
https://github.com/shangwei5/D2Net.

4.1. Datasets and Training Details

4.1.1 Datasets

GoPro Dataset: First, we evaluate the competing meth-
ods on GoPro dataset [17], which is widely adopted for im-
age deblurring and also is recently used in [20] to bench-
mark event-based deblurring. We follow [17, 20] to split
the training and testing sets. To synthesize events, we
use the open-source ESIM event simulator [23] to gener-
ate events based on sharp frames. To satisfy our assump-
tion that sharp frames exist in a blurry video, we generate
non-consecutively blurry frames in a video by randomly av-
eraging adjacent sharp frames, i.e., the average number is
randomly chosen from 1 to 15. And we assume that a gen-
erated frame Bi is sharp if the number of averaging frames
is smaller than 5, i.e., ogti = 1, otherwise ogti = 0. It is
worth noting that we randomly generate 50% blurry frames
in a video, while the other 50% frames are sharp, without
constraining that there must be 2 sharp ones in consecutive
7 frames.

Blur-DVS Dataset: To evaluate the competing methods
when handling real-world events, we use Blur-DVS [8] cap-
tured by a DAVIS240C camera with a high speed event sen-
sor and a low frame-rate Active Pixel Sensor for recording
intensity frames at resolution 180×240. Blur-DVS includes

https://github.com/shangwei5/D2Net


Table 1. Quantitative comparison of deblurring results of only blurry frames on GoPro dataset. * means that the method is incorporated
with our EFM for exploiting events.

Method DMPHN [37] STFAN [39] CDVD-TSP [19] D2Nets DMPHN* STFAN* CDVD-TSP* D2Nets*
PSNR 26.70 26.01 26.29 27.68 26.86 27.19 27.65 27.39
SSIM 0.865 0.837 0.870 0.906 0.871 0.878 0.903 0.907

Table 2. Quantitative comparison of deblurring results of whole videos on GoPro dataset.
Method DMPHN [37] STFAN [39] CDVD-TSP [19] D2Nets DMPHN* STFAN* CDVD-TSP* D2Nets*
PSNR 31.58 30.12 30.31 31.60 31.90 30.90 32.24 31.76
SSIM 0.921 0.892 0.921 0.940 0.924 0.914 0.941 0.943

Table 3. The accuracy of BiLSTM detector by taking frames and
events as input.

Input Frames Events
GoPro [17] 97.2% 99.0%

Blur-DVS [8] 94.8% 97.6%

Table 4. Component analysis on the GoPro dataset.
FDET FBRN FTCE EFM PSNR SSIM
% % ! % 31.07 0.925
! ! % % 31.00 0.924
! ! ! % 31.60 0.940
! ! ! ! 31.76 0.943

two subsets, i.e., slow-motion subset and fast-motion sub-
set. The slow-motion subset consists of 15,246 frames for
relatively static scenes. When capturing, the camera move-
ment is slow and stable, making blur rarely occurs in these
collected frames. Thus, we can synthesize videos with non-
consecutively blurry frames based on the slow-motion sub-
set, similar with that on GOPRO dataset. We synthesize
blurry videos by randomly averaging adjacent frames, i.e.,
the averaging number varies from 1 to 9, based on which
we can quantitatively compare these methods when han-
dling real events. Finally, we obtain 2,029 pairs of blurry
and sharp frames, among which 1,386 pairs are used for
training, while 643 pairs are used for testing. Similarly, we
assume that a generated frame Bi is sharp if the number
of averaging frames is smaller than 5, i.e., ogti = 1, other-
wise ogti = 0. The fast-motion subset consists of 7 video
sequences with 702 frames. When capturing, the camera
movement is fast and unstable, and there are also moving
objects. Thus, fast-motion subset can act as a real-world
blurry testing set without ground-truth sharp frames.

4.1.2 Training Details

In the training process, we use ADAM optimizer [10]
with parameters β1 = 0.9, β1 = 0.999, and ε = 10−8

for all the networks in FDET, FBRN and FTCE. The batch-
size is set to be 12 and patch size is set to be 128 × 128.
The training of networks in FBRN and FTCE share the same
hyper-parameters. In order to save training time, we use
parameters of frec in FBRN to initialize that in FTCE. For

the PWC-Net fflow, we adopt the pre-trained model [31] as
initialization. The learning rates for reconstruction modules
frec and optical flow estimation fflow are initialized to be
1 × 10−4 and 1 × 10−6 respectively, and are decreased by
multiplying 0.5 after every 100 epochs. The training ends
after 250 epochs. For BiLSTM detector, the learning rate is
set to be 1× 10−4, and the training ends after 100 epochs.

4.2. Ablation Study

4.2.1 Accuracy of BiLSTM Detector

Table 3 lists the accuracy of BiLSTM detector on two
datasets by taking frames or events as input. One can see
that BiLSTM detector with events as input are more precise
than that with frames as input, since events naturally encode
the motion trajectory. Nevertheless, the detection accuracy
of these BiLSTM detectors is high, which is sufficient to
find most blurry frames and their corresponding NSFs. We
have also tried LSTM as the detector, and found notable ac-
curacy decreases on GoPro, i.e., 2.98% decrease for frames
as input and 3.84% decrease for events as input. Also con-
sidering that BiLSTM (0.030s per frame) is not very ineffi-
cient in comparison to LSTM (0.028s per frame), BiLSTM
is a better choice for the detector.

4.2.2 Effectiveness of Components

We evaluate the contribution of each component of
D2Nets on GOPRO dataset. As shown in Table 4 and Fig. 4,
full D2Nets achieves the best deblurring performance. We
note that the individual FTCE directly takes 3 neighboring
frames as input. And it is interesting to find that individu-
al FTCE achieves higher PSNR than D2Nets without FTCE.
The reason can be attributed from two aspects: (i) Surviv-
ing blurry frames inFDET+FBRN are not processed, and (ii)
NSFs from long distance may have dramatic scene changes
with the blurry frame, yielding temporal inconsistency. The
results indicate that it is crucial to employ FTCE to enhance
temporal consistency, and it is necessary to include all the
three components in D2Nets. Furthermore, by incorporat-
ing EFM, deblurring performance can be further boosted.
We also conducted experiment by replacing EFM as con-
catenation of events and frames, and obtained -0.42dB P-
SNR decrease on GoPro dataset. This is because events



Figure 4. Visual comparison of component analysis on GoPro dataset. The first column is blurry frame, and 2 ∼ 5 columns correspond to
the results of 1 ∼ 4 rows in Table 4. Zoom in for better view.

Blurry image DMPHN [37] CDVD-TSP [19] D2Nets

STFAN [39] DMPHN* CDVD-TSP* D2Nets*
Figure 5. Visual comparison of deblurring results on GoPro dataset.

Blurry image DMPHN [37] CDVD-TSP [19] D2Nets

Ground-truth STFAN [39] CDVD-TSP* D2Nets*
Figure 6. Visual comparison of deblurring results on slow-motion subset of Blur-DVS dataset.

contain rich spatial and temporal motion information, which
cannot be fully exploited by naive concatenation.

4.3. Comparison with State-of-the-arts

We compare D2Nets and D2Nets* with state-of-the-art
methods on GoPro and Blur-DVS datasets.

4.3.1 Evaluation on GoPro Dataset

On GoPro dataset, we evaluate the deblurring perfor-
mance on both blurry frames (Table 1) and and whole video

frames (Table 2). We retrain all these competing method-
s on our training dataset for a fair comparison. From the
left side in Tables 1 and 2, one can see that our D2Nets
can achieve much higher quantitative metrics than the com-
peting methods. This is because D2Net can benefit from
the nearest sharp frames, whose sharp texture details can
be transferred to reconstruct latent clean frames. From the
right side in Tables 1 and 2, D2Nets* is still better than DM-
PHN*, STFAN* and CDVD-TSP* in terms of SSIM, which
is more consistent with visual quality than PSNR. More-
over, our EFM can improve these competing video deblur-



Blurry image DMPHN [37] CDVD-TSP [19] D2Nets

BHA [20] STFAN [39] CDVD-TSP* D2Nets*
Figure 7. Visual comparison of deblurring results on fast-motion subset of Blur-DVS dataset. More results for real-world blurry frames
can be found in supplementary file.

Table 5. Quantitative comparison of deblurring results of whole videos on Blur-DVS dataset. * means that the method is incorporated with
our EFM for exploiting events.

Method DMPHN [37] STFAN [39] CDVD-TSP [19] D2Nets DMPHN* STFAN* CDVD-TSP* D2Nets*
PSNR 29.10 32.15 32.95 33.96 31.36 32.21 34.07 34.24
SSIM 0.808 0.827 0.811 0.831 0.812 0.827 0.811 0.833

ring methods to benefit from events. Especially for DMPH-
N* and CDVD-TSP*, their deblurring performances have
been significantly boosted, validating the effectiveness of
our EFM. In terms of visual quality comparison in Fig. 5,
our D2Nets can achieve sharper texture details, and plate li-
cense numbers are easily recognized than the results by the
competing methods.

4.3.2 Evaluation on Blur-DVS Dataset

On Blur-DVS dataset, we only report quantitative results
on whole video sequences, as shown in Table 5. We note
that the competing methods and their versions with EFM
are retrained on the training set of Blur-DVS. In Table 5,
our D2Nets and D2Nets* achieve the best performance in
comparison with their competing methods in terms of both
PSNR and SSIM. Also DMPHN*, STFAN* and CDVD-
TSP* obtain notable gains than their original versions when
leveraging events using our EFM. Fig. 6 shows the visu-
al quality comparison, from which one can see that our
D2Nets* can recover sharper texture details, due to the guid-
ance of NSFs and events, while the results by other methods
still suffer from mild blur or over-smoothing textures.

Finally, we evaluate these methods on real-world blurry
frames from fast-motion subset of Blur-DVS. Besides DM-
PHN, STFAN and CDVD-TSP, we further take one event-
based deblurring method BHA [20] into comparison. As
shown in Fig. 7, our D2Nets and D2Nets* achieve the most
visually plausible deblurring results with sharper textures,

while DMPHN, STFAN and CDVD-TSP cannot fully re-
move severe blur. BHA recovers a blurry frame into a high-
frame rate video guided by events. There are significant
ringing artifacts around salient edge boundaries in deblur-
ring result by BHA. In supplementary file, we provide more
deblurring results of real-world blurry videos with events.

5. Conclusion
In this paper, we proposed a principled frame-

work D2Nets for tackling video deblurring with non-
consecutively blurry frames. D2Nets can better leverage
possible sharp frames in blurry videos, benefiting from
which blurry frames can be better restored and the tem-
poral consistency of deblurring video can be encouraged.
We further proposed a flexible event fusion module (EFM),
which can be incorporated into not only our D2Nets but al-
so existing image and video deblurring networks. Our EFM
makes event-driven deblurring task benefit from state-of-
the-art image and video deblurring networks, and will be
extended to event-driven super-resolution and interpolation
tasks in future work.
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