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Single Image Deraining Using
Bilateral Recurrent Network

Dongwei Ren, Wei Shang, Pengfei Zhu, Qinghua Hu, Deyu Meng and Wangmeng Zuo

Abstract—Single image deraining has received considerable
progress based on deep convolutional neural network. Most
existing deep deraining methods follow residual learning in image
denoising to learn rain streak layer, and perform limited in
restoring background image layer. In this work, we first propose
a single recurrent network (SRN), where the composition pattern
of two layers can be exploited and propagated in multiple stages
via LSTM, thereby contributing to the remedy of possible over-
removal of rain streaks. This simple SRN is effective not only in
learning residual mapping for extracting rain streaks, but also in
learning direct mapping for predicting clean background image.
Furthermore, we propose bilateral recurrent network (BRN) to
allow the interplay between rain streak and background image
layers. In particular, two SRNs are coupled to simultaneously
exploit these two layers. Instead of naive combination, we propose
bilateral LSTMs, which not only can respectively propagate deep
features across stages, but also bring the interplay between these
two SRNs, which is essential in separating two layers from
rainy observation. The experimental results demonstrate that
our BRN notably outperforms state-of-the-art deep deraining
networks on synthetic datasets quantitatively and qualitatively.
The proposed methods also perform more favorably in terms
of generalization performance on real-world rainy dataset. All
the source code and pre-trained models are available at https:
//github.com/csdwren/RecDerain.

Index Terms—Image deraining, convolutional neural network,
recurrent network, LSTM.

I. INTRODUCTION

EMOVING rain streaks plays an important role in many
computer vision applications in rainy outdoor scenes,
e.g., surveillance, object detection and recognition [1], [2].
Single image deraining is a very challenging ill-posed prob-
lem, and has received considerable research attention in recent
years [3]-[9]. Basically, image deraining can be treated as an
image decomposition problem, i.e., a rainy image y should
be decomposed into a rain streak layer r and a clean back-
ground image layer x. There are several conventional opti-
mization based deraining methods [4], [10]-[12] by studying
the composition pattern of rainy image and designing proper
regularization priors.
With the great success of deep learning in low level vision
tasks, e.g., denoising [|3]-[17], super-resolution [I8]-[21],
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Fig. 1. Deraining results by RESCAN [5], SRN (T" = 6) at stage t = 1, 2, 6,
and BRN (T" = 6), respectively. The result by RESCAN [5] suffers from
visible artifacts along with orientations of rain streaks. For SRN, rain streaks
can be gradually removed in multiple stages, but the final deraining image
still has bright artifacts. The result by BRN is more visually favorable.

motion deblurring [22], [23] etc, deep convolutional neural
network (CNN)-based deraining methods also achieve sig-
nificant performance improvements against conventional op-
timization based methods. By assuming the linear degradation
model y = x + r, most existing deep deraining networks
follow residual learning in image denoising [!3] to learn rain
streak layer. As seminal deep deraining approaches, Fu et
al. decompose a rainy image into a base layer and a detail
layer, and utilize a 3-layer CNN [3] or a deeper residual
network (ResNet) [24] to extract rain streaks from the detail
layer. Yang et al. [7] propose a joint rain streak detection and
removal framework by using a dilated convolution network.
Furthermore, many network architectures, e.g., residual-guide
fusion network [6], rain density aware multi-stream dense
network [25], squeeze-and-excitation context aggregation net-
work [5], Laplacian pyramid network [1] and spatial attentive
network [26] have been proposed to better extract rain streaks.
Most recently, unsupervised learning [27] and semi-supervised
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networks.

Despite of these various network architectures and training
strategies, image deraining actually is a layer decomposition
task, where both rain streak layer r and background image
layer x convey rich structural information. For most existing
methods, rain streak layer r is often over-estimated by deep
CNN (see Fig. 8 for background textures in estimated rain
streak layer), and then clean background image x is directly
predicted by subtracting rain streak layer r from rainy image
y. They ignore the composition and interplay of rain streak
and background image layers, and perform limited in restoring
clean background image layer. Moreover, the composition
pattern of rainy image is much more complicated than linear
degradation model [I1], [26], and thus clean background
image is often over-subtracted, yielding dark artifacts along
with the orientations of rain streaks or over-smoothing textures
in deraining images (see the results in Figs. 1 and 9).

In this paper, we first propose a single recurrent network
(SRN), which is effective in learning direct mapping from
rainy image to clean background image. In particular, SRN
basically employs a simple shallow ResNet that is recursively
unfolded several times to benefit from progressive derain-
ing in multiple stages. Furthermore, a recurrent layer, i.e.,
convolutional Long Short-Term Memory (LSTM) [29], [30],
is introduced into SRN to exploit the dependencies of deep
features across recursive stages, as shown in Fig. 2. The
progressive model is crucial to remove rain streak layer. In
each stage, original rainy image is also taken as input, by
which the composition pattern of two layers can be exploited
and propagated in intermediate stages via LSTM, thereby
contributing to the remedy of possible over-removal of rain
streaks. From Fig. 1, one can see that rain streaks can be
progressively removed by SRN in multiple stages.

Furthermore, for the layer separation task, it is reasonable
that both rain streak and background image layers should be
exploited. SRN is able to model either rain streak layer or
background image layer. Thus, we further present bilateral
recurrent network (BRN) which exploits bilateral LSTMs
(BLSTMs) to allow the interplay between these two layers.
Specifically, we employ a SRN F, to extract rain streak
layer r, which is then fed to another SRN F, to predict
clean background image x, as shown in Fig. 3. Both F.
and F, are recursively unfolded several times. Instead of
naive combination, we propose BLSTMs that are incorporated
into F,. and F,, finally forming our BRN. As shown in
Figs. 3 and 4, by adopting BLSTMs, not only the deep
features of rain streak layer and background image layer can
be respectively propagated across multiple stages, but also
the interplay between F, and F, would facilitate deraining
performance. From Fig. 1, one can see that the result by BRN
is more visually plausible than those by SRN and RESCAN
[5].

In order to train the deraining networks, hybrid loss func-
tions with careful trade-off parameter tuning are usually adopt-
ed to achieve good performance [ 1], [5], [24]. In this paper, our
SRN and BRN instead can be easily trained using a single loss
function, e.g., mean square error (MSE) loss or negative SSIM

] have also been studied for training deraining

loss [31]. Extensive experiments have validated the superiority
of BRN against state-of-the-art deep deraining networks [1],
[5], [7], [24], [26], [28], [32], [33] on several benchmark
datasets. Moreover, our BRN can be well generalized to
handle real-world rainy dataset [26], and perform favorably in
generating visually plausible deraining results. We summarize
our contributions from three aspects:

e We propose SRN to tackle image deraining in a pro-
gressive manner, where the composition pattern of rain
streak and background image layers can be exploited and
propagated in intermediate stages via LSTM.

e« We propose BRN for modeling the interplay between
rain streak and background image layers, which is also
essential in further improving deraining performance.

o Experimental results demonstrate that SRN and BRN
achieve notable performance gains against state-of-the-
art methods on synthetic and real rainy images.

The remainder of this paper is organized as follows. Section

IT reviews related works including optimization-based and
deep network-based image deraining methods. Section III
presents the proposed SRN and BRN for image deraining.
Section IV gives the comparison with state-of-the-art methods,
and Section V ends this paper with conclusions and discus-
sions.

II. RELATED WORK

In this section, we present a brief review on traditional
optimization-based and deep network-based image deraining
methods.

A. Optimization-based Deraining Methods

Generally, a rainy image can be represented as the composi-
tion of a clean background image layer and a rain streak layer.
On the one hand, a linear summation is usually adopted [4],
[10], [34], based on which proper regularizers are designed to
well pose the deraining problem that is then solved by opti-
mization algorithm. In [10], smoothness regularization and low
rank prior are respectively imposed on background image layer
and rain streak layer. In [4], two GMMs that are respectively
trained on clean image patches and rain streak patches are
deployed to model background image layer and rain streak
layer. The additive degradation model has also been widely
adopted in optimization-based video deraining methods [35]-
[39]. On the other hand, it has been suggested that the screen
blend model [ 1] is more realistic for the composition of rainy
image. And then the discriminative dictionary learning-based
deraining method is proposed [ 1], where rain streak layer
and background image layer are forced to share the fewest
dictionary items. However, the composition of real rainy image
is much more complicated than existing models, making these
optimization-based methods are still facing limited deraining
quality.

B. Deep CNN-based Deraining Methods

A natural deraining solution based on deep learning is to
adopt CNNs for directly recovering clean background image



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, MONTH YEAR 3

Fig. 2. The illustration of SRN with T stages recursion, where dash lines mean that the network parameters are reused in multiple stages. The architecture

details of SRN refer to Eqn. (2).

from rainy image. However, the pioneer works [3], [24]
suggest that deep CNNs are ineffective in learning direct
mapping from rainy image to background image. Instead,
Fu et al. propose to remove rain streaks from the detail
layer of a rainy image, where a shallow CNN [3] and a
deeper ResNet [24] are successively employed. In [7], a very
complicated CNN architecture is designed for jointly detecting
and removing rain streaks, in which multi-scale dilation filters
are adopted to benefit from larger size receptive field. Li et
al. [5] propose to recurrently utilize dilated CNN to handle
heavy rain streak accumulation. Zhang et al. [25] propose a
density aware multi-stream densely connected CNN for joint
estimating rain density and removing rain streaks. Besides,
there are several works to incorporate lightweight networks in
a cascaded scheme [6] or in a Laplacian pyramid framework
[1]. Moreover, in [40], the authors propose to take advantage of
adversarial learning to enhance the texture details in derained
images. Most recently, unsupervised learning [27] and semi-
supervised learning [28] are adopted to train deraining net-
works. To sump up, despite of various network architectures
and training strategies, these deep deraining networks learn
residual mapping for extracting rain streaks, which are then
directly subtracted from rainy image, often yielding over-
subtracted dark artifacts especially for heavy rainy images.
In this work, we show that our proposed single recurrent
network eases the difficulty of learning, and it is feasible
to train SRN for learning either direct mapping or residual
mapping. Furthermore, our BRN can simultaneously exploit
rain streak layer and clean background image layer, leading
to more favorable deraining results.

III. PROPOSED METHOD

In this section, we first propose a single recurrent network
for direct mapping, which is also effective in residual map-
ping. Then bilateral recurrent network is proposed by taking
advantages of SRN and bilateral LSTMs. Finally, we show that
our SRN and BRN models can both be easily trained using a
single loss function.

A. Single Recurrent Network

As suggested in [3], [24], a plain deep CNN cannot succeed
in directly predicting clean background image from rainy
image, and thus deeper and more complicated networks are
developed to extract rain streaks via learning residual mapping
from rainy image to rain streak layer. However, we suggest

that the difficulty of learning deraining network can be eased
in multiple stages, and thus it is feasible to train a simple
network F to learn direct mapping from rainy image to clean
background image layer. By unfolding F with T times, the
inference at stage ¢ can be formulated as,

x' = F(y,x"1), (1

where the parameters of F are reused across different stages.
It is expected that F can remove rain streaks gradually in each
stage.

As shown in Fig. 2, we study F with four parts: (i) The
input layer fi, takes the concatenation of rainy image y and
xt~! from stage t — 1 as input, (ii) recurrent layer fiecurrent
for propagating dependencies across stages to facilitate pro-
gressively removing rain streaks, (iii) several residual blocks
(ResBlocks) fres for extracting deep features, and (iv) output
layer f,, for generating deraining background image. This
simple network is dubbed single recurrent network (SRN) for
image deraining. The inference of SRN F at stage ¢ can be
formulated as,

Zt = fin(xt_17Y)7
h' = frecurrent(htil, Zt)a 2
x' = foul(fres(ht))v

where fin, fres and fo are stage-invariant, i.e., network param-
eters are reused across different stages. The deraining results
by SRN in Fig. | show that heavy rain streaks accumulation
can be gradually removed stage-by-stage. In the following, we
present the implementation details of key modules in SRN. We
note that all the filters are with size 3 x 3, padding 1 x 1 and
stride 1.

1) Input Layer f;,: Generally, fi, is a 1-layer convolution
with ReLU nonlinearity [41] for generating deep features z! =
fin(x'71,y). Due to the concatenation of 3-channel RGB y
and 3-channel RGB x*~!, the convolution in f;, has 6 channels
for input, and the output channel number is 32.

2) Recurrent Layer frcurens: At stage t, the recurrent
layer frecurent Teceives both the features z! from input layer
and recurrent state h*~! from stage ¢ — 1. frecurrent Can be
implemented using either convolutional LSTM [29], [30] or
convolutional Gated Recurrent Unit (GRU) [42]. In SRN,
we choose LSTM since it performs better quantitatively in
experiments for image deraining. The LSTM includes an input
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Fig. 3. The architectures of BRN at stage ¢t. BRN consists of two coupled
SRNs, i.e., F- for extracting rain streaks and F for predicting background
image. Instead of two individual LSTMs, BRN can benefit from the interplay
between F;. and F, using BLSTMs.

gate it, a forget gate f*, an output gate o’ and a cell state c?,
and can be formulated as,

i'=0c(Wy, 22"+ W, ® h'~! 4 b;),

ft = J(sz ® z' + W ® '+ bf)’

o' =0(W,. ®z' + Wo, @h'™' +b,),

gl = tanh(W,, @ 2" + W, @ h™! +b,),
cd=floc +itog,

h! = o' ® tanh(c"),

3)

where ® is 2D convolution, ® is entry-wise product, o is
sigmoid function, W and b are corresponding convolution
matrix and bias vector. All the convolutions in LSTM have 32
input channels and 32 output channels.

3) Residual Blocks frs: fres 1s the key component to extract
deep representation for deraining. We implement f,, with 5
ResBlocks as its simplest form, i.e., each ResBlock includes 2
convolution layers followed by ReLU [41]. All the convolution
layers receive 32-channel features without downsampling or
upsamping operations.

4) Output Layer f,u,: fou takes deep features from f with
32 channels as input, and generates deraining RGB image with
3 channels.

B. Learning Residual Mapping via SRN
Analogously, SRN can be adopted to learn residual mapping
for extracting rain streaks, which can be formulated as,

r' = F(y,r'™),

x'=y-r,

“4)

whre F shares the same architecture as that in Eqn. (1), except
substituting rain streak layer r as input and output. Due to
its narrower mapping range, SRN with residual mapping can
achieve a little better results than SRN with direct mapping
(refer to the comparison in Table II). Nevertheless, our SRN
is more effective in both extracting rain streaks and predict-
ing background image against existing complicated deraining
networks.

C. Bilateral Recurrent Network

Although SRN with residual mapping can achieve better
quantitative results, its extracted rain streak layer contains
some textures from background image (see Fig. 8), and thus
the over-subtracted deraining image is likely to be over-
smoothed. Taking one step further, we propose to stack two

SRNs for extracting rain streaks and predicting clean back-
ground image, respectively. At stage ¢, it can be formulated

as, 1
rt = fr(y'vrti )7

t

5
X! = Foly.x1 ), ©)

where F,. and F, are two coupled SRNs for extracting rain
streak layer and clean background image layer, respectively,
resulting in coupled recurrent network (CRN) for image de-
raining. In CRN, two individual LSTMs are adopted to prop-
agate deep features across rain streak layer and background
image layer, respectively. We in this work suggest that the
interplay between these two layers would facilitate deraining
performance. To this end, we first propose bilateral LSTMs
(BLSTMs).

1) Bilateral LSTMs: Besides propagating the hidden states
across stages, we propose to bring the interplay between these
two LSTMs, forming BLSTMs. As shown in Fig. 4, the hidden
state h, in layer r is not only propagated across stages to
facilitate rain streak extraction, but also is fed to the BLSTM
in layer x, and vice versa.

In particular, BLSTM in F,. at stage ¢ receives the features
zt = f.(y,r'"!) from input layer f.(-), recurrent state
h!~! in rain streak layer and recurrent state h’~! from clean
background image layer as the input. And then BLSTM in F,.
can be formally expressed as,

ii = 0(W,i, @2" + Wy, @b+ Wy, @ hi7 +byy),
' =0(W,p @zt + Wopn, @l + Wop @ hl7h 4+ b,y),
t

-

"

T
¢ = U(WTOZ ® zfn + WTOhm ® h;71 + W?"()hr ® hf'-il + b'l"O)?

o

y = tanh(W,,, ® Z$‘+W7'ghz ® htac_1+wrgm ® hi_l +byg),
. =foc ! +ilog,

! = ol ®tanh(cl).

wr

=

(6)
BLSTM in F, has almost the same architecture with that in 7,
by substituting subscripts r and x. And the minor distinctions
are two-fold: (i) z’, = f,(y,x'~!, r?) is received as input, and
(ii) recurrent state h’ instead of h’~! is taken into account.
And the BLSTM in F, is formulated as,

iL = 0(Wyi @2, + Wy, @ hl + W, @ bl ! + b)),

x

£l =0(Wyp @2, + Woypn, @hl + Wop, @ hl7! +b,y),
ol = 0(Wyo. ® 2L + Woon, @ hl + Woop, @ hi7 +by,),
gl = tanh(W,y.® 2L + W, @ hi + W, @ hE 1 4+b,,),
¢, =f, 0 +i, 08,

h! = o}, ® tanh(c).

(7
By adopting BLSTMs, deep features can be propagated be-
tween two layers and across multiple stages.

2) Bilateral Recurrent Network: As shown in Fig. 3, two S-
RNs F,. and F, can be recursively unfolded 7" times. BLSTM
is incorporated into F,. and JF, to respectively propagate deep
features of F, and F, across stages and bring the interplay
between F, and F,, forming BRN. At stage ¢, BRN can be
formulated as,

¢ = f'I’(Y7 rt_17 (hﬁ‘_lﬂh;’_l))7

Ir
8
st = Fo(y,x=1, 1, (bt b)), ®)
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Fig. 4. The architecture of BLSTMs, where the hidden states h, and h, are
not only respectively propagated through layer X’ and layer R (dash lines),
but also bring the interplay between layer R and layer X’ (solid lines). The
notations are defined in Eqns. (6) and (7). We note that CONV here denotes
corresponding convolutional matrices and bias vectors.

where h, and h, are recurrent states for rain streak layer and
background image layer in BLSTMs, respectively.

Generally, F, and F, share the similar SRN architecture.
Fr includes 1 input layer, BLSTM, 3 ResBlocks and 1
output layer. The input layer includes 1 convolution layer
and ReLU, and receive the concatenation of rainy image y
and previous rain streak layer r'~! as the input. The only
distinctions of F, with F, are two-fold: (i) 5 ResBlocks are
adopted in F, since the background images are usually with
richer structures and textures. (ii) The input layer receives
not only the concatenation of the rainy image y and the
estimated background image x'~!, but also the current rain
streak layer r‘. By simultaneously considering rain streak layer
and background image layer, the composition pattern of rainy
images can be implicitly learned by F,. The other parameters
including convolution channels, kernel size, padding and stride
have the same settings with SRN.

D. Training SRN and BRN

As for training SRN with T stages, we have T outputs, i.e.,
x!, x2,..., xT, and it is natural to impose recursive supervision

on every intermediate result,

T
L= thl Al (x!,x9Y) )

where x9' is the corresponding ground-truth clean image,
(-, -) measures the difference between the output of SRN at
stage ¢ and the corresponding ground-truth, and )\; is a trade-
off parameter.

For BRN with T stages, we have T' estimated background
images and 7T rain streak layers, i.e., x!, x2...., xT and r',
r2,..., r7. Similar to Eqn (9), the recursive supervision on
background image layer and rain streak layer can be defined

as,
L, = Zj Al (xt,xgt) ,

T
L, = thl Al (rt,r9%) . (a1

Then £, and £, should be balanced by two trade-off param-
eters o and [,

(10)

L=al, + BL,. (12)

Moreover, it is worth noting that we have tried to train SRN
and BRN by only imposing supervision on the final output x”,

L£=(xT,x9%). (13)

It is interesting to see that the single loss function can lead to
better performance for both SRN and BRN (see the results in
Sec. IV-Al).

As for the choice of /(-,-), several hybrid loss functions,
e.g., MSE+SSIM [6], ¢/1+SSIM [1] or adversarial loss [40],
have been widely adopted for training deraining networks.
Nevertheless, we empirically find that a single loss function,
e.g., MSE loss or negative SSIM loss [31], is sufficient to train
both SRN and BRN, which can be attributed that our proposed
recurrent network architecture eases the difficulty of learning.
Given an image a and its corresponding ground-truth image
a9, the negative SSIM loss and MSE loss can be respectively
formulated as,

((a,a%") = —SSIM (a,a%"), (14)
ta 2 = | 19

And the experimental results in Sec. IV-Al indicate that
a single negative SSIM loss can achieve superior results
quantitatively and qualitatively.

IV. EXPERIMENTAL RESULTS

In this section, we first conduct ablation studies to verify
the key contributions of SRN and BRN, then evaluate SRN
and BRN against state-of-the-art deraining methods on several
benchmark datasets quantitatively and qualitatively, and finally
validate their generalization performance on real-world rainy
images. More results can be found at https://github.com/
csdwren/RecDerain.

Our SRN and BRN are implemented using Pytorch [43],
and are trained on a PC equipped with two NVIDIA GTX
1080Ti GPUs. In our experiments, SRN and BRN share the
same training settings except specific declarations. The patch
size is 100 x 100. The batch size is 18 for SRN and is 12
for BRN. The ADAM [44] algorithm is adopted to train the
models with an initial learning rate 1 x 1073, and ends after
100 epochs. When reaching 30, 50 and 80 epochs, the learning
rate is decayed by multiplying 0.2.

A. Ablation Study

All the ablation studies are conducted on a heavy rainy
dataset [7] with 1,800 rainy images for training and 100 rainy
images (Rain100H) for testing. The training and testing images
for RainlOOH have been updated recently on their project
website. However, the reported results in recent deraining
works are still based on the original dataset. To keep the
consistent comparison, we thus adopt the original dataset
for evaluation, where we strictly exclude 546 rainy images
from the 1,800 training samples since they have the same
background contents with testing images. The performance is
quantitatively evaluated using two popular metrics in low-level
vision tasks, i.e., SSIM [31] and PSNR.

For both SRN and BRN, the trade-off parameters {\;}7 ;
are set as Ay = 0.5 (t =1,2,...,T — 1) and Ay = 1.5, where
the trade-off parameter for the final stage is larger than the
others. For BRN, the trade-off parameters o = 0.45 and 8 =
0.55 are adopted. Moreover, the stage number T" = 6 is set for
SRN and BRN except in the subsection for discussing stage
number selection.
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1) Loss Functions: We discuss the effects of single loss
and recursive loss, and the comparison of single MSE loss
and single negative SSIM loss.

Single Loss vs. Recursive Loss. By taking negative SSIM loss
Eqn. (14), SRN and BRN are trained using single SSIM loss
(SRN-SSIM and BRN-SSIM) and recursive SSIM loss (SRN-
RecSSIM and BRN-RecSSIM), respectively. From Table I, it
is interesting to see that SRN-RecSSIM and BRN-RecSSIM
perform moderately inferior to SRN-SSIM and BRN-SSIM,
respectively. The results indicate that a single loss on the final
stage is sufficient to train our SRN and BRN.

MSE Loss vs. Negative SSIM Loss. Then we discuss the
performance of negative SSIM loss against MSE loss (SRN-
MSE and BRN-MSE) under the single supervision. From
Table I, one can see that SRN-SSIM and BRN-SSIM are better
in terms of not only SSIM metrics but also PSNR metrics.
We empirically suggest that a single negative SSIM loss is
sufficient to train our SRN and BRN models.

TABLE I
COMPARISON OF SRN AND BRN MODELS WITH DIFFERENT LOSS
FUNCTIONS.
SRN-MSE SRN-SSIM SRN-RecSSIM
PSNR 29.08 29.32 29.12
SSIM 0.880 0.898 0.895

(a) Comparison of SRN models with different loss functions.

BRN-MSE BRN-SSIM BRN-RecSSIM
PSNR 29.40 30.47 30.31
SSIM 0.885 0.913 0.908

(b) Comparison of BRN models with different loss functions.

2) Network Architecture of SRN: In this subsection, we
assess the contributions of several key modules of SRN,
including recurrent layer, network input, and provide the
comparison of residual mapping and direct mapping.

Recurrent Layer. In SRN, we test two types of recurrent
layers, i.e., LSTM (SRN-LSTM) and GRU (SRN-GRU). It can
be seen from Table II that LSTM performs slightly better than
GRU in terms of quantitative metrics, and thus is adopted as
the default implementation of recurrent layer in our methods.

TABLE 11
COMPARISONS OF SRN VARIANTS FOR ABLATION STUDIES. SRN, ONLY
ADOPTS x/~1 AS INPUT. SRN-LSTM AND SRN-GRU LEARN DIRECT
MAPPING FOR PREDICTING BACKGROUND IMAGE, WHERE LSTM
RECURRENT LAYER IS USED IN SRN-LSTM AND GRU RECURRENT
LAYER IS USED IN SRN-GRU. SRN IS THE FINAL MODEL BY ADOPTING
RESIDUAL MAPPING, LSTM RECURRENT LAYER AND THE
CONCATENATION OF y AND x‘~1 AS INPUT.

SRN, SRN-LSTM SRN-GRU SRN
PSNR 28.91 29.32 29.08 29.46
SSIM 0.895 0.898 0.896 0.899

Network Input. We test a variant of SRN by only taking x!~!

at each stage as input to fi, (i.e., SRN;), where such strategy
has been adopted in [5], [7]. From Table II, SRN,, is obviously
inferior to SRN in terms of both PSNR and SSIM, indicating
the benefit of receiving y at each stage.

Stage T

Fig. 6. Average PSNR and SSIM of SRN and BRN with recurrent stage
number 7'=1,2,3,...,9.

Direct Mapping vs. Residual Mapping. By adopting the
same SRN architecture, we use SRN to learn direct mapping
(i.e., SRN-LSTM in Table II) for predicting background image
and to learn residual mapping (i.e., SRN in Table II) for ex-
tracting rain streaks. From Table II, SRN is effective in directly
generating clean background image, and residual mapping can
make a further contribution to performance gain. To sum up,
benefited from the recurrent networks, it is feasible to learn
SRN in either residual mapping or direct mapping for image
deraining, both leading to appealing deraining performance.

3) Network Architecture of BRN: Based on the observations
in SRN, we adopt LSTM and BLSTMs in CRN and BRN. To
validate the effectiveness of BLSTMs in BRN, we provide
several variants of BRN, including CRN (with two individual
BLSTMs) and two BLSTMs variants, i.e., BRN,._,, (informa-
tion only from F,. to F,) and BRN, _,,. (information only from
Fz to F,.). From Table III, one can see that BRN can achieve
higher average PSNR and SSIM metrics than CRN, BRN,._,
and BRN,_,,. It is worth noting that BRN,._,, is inferior to
CRN, and it is owing to that we only supervise the final stage
of x, possibly leading to inaccurate rain streaks r. And thus
the monodirectional information from F,. to F, would damage
the performance. But the interplay between J, and F, can
make significant improvements against all the three variants,
indicating the effectiveness of BLSTMs. We also report the
visual quality comparison of these variants in Fig.5.

4) Variants of SRN and BRN: We present the comparison
of variants of SRN and BRN.

Bilateral GRUs vs. Bilateral LSTMs. By adopting the same
training settings with BRN, a variant BRN-GRU is trained



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, MONTH YEAR 7

CRN

Rainy image

Fig. 5. Visual comparison of BRN variants by adopting different BLSTMs.

TABLE III
EFFECTIVENESS OF BLSTMS IN BRN.
CRN BRN,_,, BRN,_, BRN
PSNR 30.04 30.22 30.01 30.47
SSIM 0.909 0.910 0.908 0.913

to verify the effectiveness of bilateral GRUs. In BRN-GRU,
LSTMs in both F,. and F, are substituted as GRUs [42]. On
Rain100H dataset [7], BRN with bilateral LSTMs outperforms
BRN-GRU in terms of both average PSNR and SSIM values,
as reported in Table IV. The PSNR decrease ~0.4dB by BRN-
GRU is notable, which can also be verified in terms of visual
quality as shown in Fig. 7. Therefore, bilateral LSTMs is a
better choice against bilateral GRU for BRN.

Bilateral Recurrent Architecture vs. Single Recurrent Ar-
chitecture. One may argue that SRN with more parameters
would perform better than BRN. As reported in Table IV, by
increasing ResBlocks number to 18, SRN™ has the larger num-
ber of parameters than BRN and BRN-GRU. SRN* indeed
achieves better performance than SRN, but it is significantly
inferior to BRN. It is worth noting that BRN-GRU has 20%
less amount of parameters than SRN™, but it still performs
better than SRN™ in terms of both PSNR and SSIM values.
Thus, the superiority of BRN should be mainly ascribed to the
bilateral recurrent architecture instead of simply increasing the
number of parameters.

TABLE IV
COMPARISON OF VARIANTS OF SRN AND BRN ON RAINI100H [7]. SRNT
IS A VARIANT OF SRN BY INCREASING RESBLOCKS NUMBER TO 18.
BRN-GRU 1S A VARIANT OF BRN BY SUBSTITUTING LSTMS WITH

BRNr o

GRUs.
SRN SRN™T BRN-GRU BRN
PSNR 29.32 29.99 30.08 30.47
SSIM 0.898 0.906 0.908 0.913
#Parameters 168,963 409,411 320,166 375,526

5) Recurrent Stage Number T: We hereby discuss the stage
number 7" for SRN and BRN. Fig. 6 demonstrates PSNR and
SSIM values of SRN and BRN models by setting recurrent
stage number 7' = 1,2, 3,...,9 trained using single negative
SSIM loss. One can see that SRN and BRN have the consistent
performance increases along with increasing stage number T
from 1 to 6. When T' > 6, we can observe the performance
drops or perturbations for SRN and BRN. Especially, 7' = 9
yields performance drops for both SRN and BRN, possibly
due to too long backward propagation distance. Thus, in the

BRN

following experiments, we set 7' = 6 for both SRN and BRN
in comparison with state-of-the-art algorithms.

TABLE VI
QUANTITATIVE COMPARISON ON RAIN1400 DATASET [24].
DDN [24] SIRR [28] BRN
PSNR 29.91 28.44 32.75
SSIM 0.910 0.889 0.948

B. Comparison with State-of-the-arts on Synthetic Datasets

We first evaluate BRN on three benchmark datasets, i.e.,
Rain100H [7], Rain1O0OL [7] and Rainl2 [4], and compare
it with several state-of-the-art deraining methods including
conventional optimization-based method: GMM [4], state-
of-the-art supervised deep CNN-based methods: DDN [24],
ResGuideNet [6], JORDER [7] and RESCAN [5], and semi-
supervised deep deraining method: SIRR [28]. For heavy
rainy images (Rain100H) and light rainy images (Rain100L),
the models are respectively trained, and the models for light
rain are used to process Rainl2. Since the source codes of
ResGuideNet are not available, we borrow the quantitative
results from [6]. As for JORDER, we directly calculate average
PSNR and SSIM on deraining results provided by the authors.
As for semi-supervised SIRR [28], we adopt their pre-trained
model where SIRR model is fine-tuned using real-world rainy
images. It is worth noting that RESCAN and BRN are trained
on strict 1,254 rainy images for RainlO0OH. The comparison
results are reported in Table V, from which we can see that our
BRN is notably superior to the existing methods. Especially
for Rainl00H with heavy rain streaks, the performance gain
by our BRN is very significant. The semi-supervised SIRR is
moderately inferior to the other supervised deraining methods,
because real-world rainy images are quite different from these
synthetic datasets. As shown in Fig.8, BRN can effectively
extract rain streak layer r using ., while the rain streak layers
estimated by RESCAN has background textures.

Moreover, the authors [33] have updated the datasets of
Rain100H and Rain100L, both of which include 1,800 training
pairs and 200 testing images. We notate them as RainHeavy*
and RainLight*, respectively. And we take more recent
state-of-the-art methods into comparison on RainHeavy* and
RainLight*, including DDN [24], SIRR [28], SPANet [26],
RESCAN [5], PReNet [32] and JORDER-E [33]. Due to the
inconsistent evaluation metrics adopted in their original papers,
we re-train all these models for RainHeavy* and RainLight*.
Average PSNR and SSIM values are reported in Table VII.
One can see that our BRN achieves much higher quantitative
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Ramy image BRN-GRU

Ground-truth

Fig. 7. Visual comparison of variants of SRN and BRN. SRNT is a variant of SRN by increasing ResBlocks number to 18. BRN-GRU is a variant of BRN
by substituting LSTMs with GRUs.

TABLE V
AVERAGE PSNR AND SSIM COMPARISON ON SYNTHETIC DATASETS, INCLUDING RAINT100H [7], RAIN10OL [7] AND RAIN12 [4].
GMM [4] DDN [24] ResGuideNet [6] JORDER [7] RESCAN [5] SIRR [28] BRN
Rain100H | 15.05/0.425 21.92/0.764 25.25/0.841 26.54/0.835 28.64/0.864  22.47/0.716 | 30.47/0.913
Rainl100L | 28.66/0.865 32.16/0.936 33.16/0.963 36.61/0.974 —_— 32.37/0.926 | 38.16/0.982
Rainl2 32.02/0.855 31.78/0.900 29.45/0.938 33.92/0.953 —_— 34.02/0.935 | 36.74/0.959

Rain streak layer by BRN

Rain streak layer by RESCAN [5]

Fig. 8. Comparison of extracted rain streak layers by BRN and RESCAN [5]. The rain streak layer by RESCAN contains background textures, while the
one by BRN is clearer.

Ralny 1mage

TABLE VII
AVERAGE PSNR AND SSIM COMPARISON ON NEW DATASETS OF RAINIOOH AND RAIN100L, I.E., RAINHEAVY™® AND RAINLIGHT* [33].
DDN [24] RESCAN [5] SIRR [28] SPANet [26] PReNet [32] JORDER-E [33] BRN
RainHeavy™ | 22.03/0.713  28.02/0.862  22.17/0.719 26.59/0.869  29.36/0.903 29.21/0.891 30.27/0.917
RainLight* | 31.66/0.922  38.43/0.982  32.20/0.929 36.13/0.975 37.93/0.983 39.13/0.985 38.86/0.985
TABLE VIII
GENERALIZATION EVALUATION ON REAL-WORLD RAINY DATASET SPADATA [26], WHERE THE MODELS ARE TRAINED FOR RAINLIGHT* [33].
DDN [24] RESCAN [5] SIRR [28] SPANet [26] PReNet [32] JORDER-E [33] | BRN
PSNR 34.80 34.73 34.84 35.26 35.00 34.13 35.34
SSIM 0.936 0.937 0.936 0.945 0.941 0.934 0.945
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TABLE IX
COMPARISON OF RUNNING TIME (SECONDS).

Tmage Size | DDN [01] RESCAN [5] SIRR [23] SPANet [26] PReNet [32] JORDER-E [33] | BRN

512 x 512 1.80 1.03 .81 228 0.17 0.53 0.40

1024 x 1024 2.78 3.79 2.75 10.38 0.62 2.15 1.49

gy

SPANet [26] PReNet [32]

JORDER-E [33] BRN

Fig. 9. Visual quality comparison of synthetic rainy image in RainHeavy* [33].

metrics than all the competing methods on RainHeavy*. On
RainLight*, BRN is only a little inferior to JORDER-E in
terms of PSNR, but is comparable in terms of SSIM. In Fig.
9, BRN can remove rain streaks clearly.

Then we evaluate BRN on another dataset Rain1400 [24],
including 12,600 rainy images for training and 1,400 rainy
images for testing. As reported in Table VI, BRN achieves
more significant gains than DDN and SIRR. The visual quality
improvement is also very significant, while the results by
DDN and SIRR still have visible rain streaks in Fig. 10. The
performance improvements in quantitative metrics and visual
quality can be attributed to the bilateral modeling capacity of
BRN.

Finally, the comparison of computational efficiency is con-
ducted. Considering optimization-based method GMM is very
time-consuming and the code of ResGuideNet is not released,
we report the inference time of DDN [24], RESCAN [5],
SIRR [28], SPANet [26], PReNet [32] and JORDER-E [33]
for image sizes 512 x 512 and 1024 x 1024. The running time
is recorded on one NVIDIA GTX 1080Ti GPU. As reported in
Table IX, BRN is more efficient than the competing methods
except our previous PReNet [32]. Meanwhile, considering
better performance in Table VII and better generalization
ability in Table VIII, our BRN can be a preferred choice for
practical applications.

C. Evaluation on Real Rainy Images

In this subsection, we evaluate the generalization ability of
BRN against state-of-the-art competing algorithms on real-
world rainy images. The authors in [26] established a real-
world rainy dataset, i.e., SPAData, containing 1,000 testing
rainy and clean image pairs from rainy videos. Our methods
are compared with DDN [24], RESCAN [5], SIRR [28],
SPANet [26], PReNet [32] and JORDER-E [33]. We note that
the semi-supervised SIRR [28] network is fine-tuned using
many real-world rainy images in unsupervised learning, while
the other supervised methods are trained for RainLight*. The
quantitative metrics are reported in Table VIII, from which
one can see that BRN can generalize well to real-world rainy
images. From Tables VII and VIII, albeit BRN is slightly
inferior to JORDER-E on RainLight*, it achieves much higher
metrics (i.e., more than 1dB in PSNR) when applying to real
rainy images. As shown in Fig. 11, BRN is able to clearly
remove rain streaks, while the other methods suffer from
remaining visible rain streaks.

V. CONCLUSION

In this paper, we first proposed a simple yet effective
single recurrent network (i.e., SRN) for image deraining.
SRN is effective not only in learning residual mapping for
extracting rain streaks but also in learning direct mapping for
predicting background image. Then by coupling two SRNs and
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Rainy image DDN [24]

Fig. 10. Visual comparison on Rain1400 dataset [24].

SPANet [26] PReNet [32]

Fig. 11. Visual comparison of real-world rainy image in SPAData [26].

incorporating BLSTMs, BRN was proposed to sequentially
extract rain streaks and generate clean background image,
where the interplay between rain streak layer and clean
background image layer can be exploited. Both SRN and
BRN can be easily trained using only a single negative SSIM
loss. Extensive experimental results validate the superiority of
BRN in deraining performance on several benchmark datasets
against state-of-the-art deraining methods. And our trained
models can be better generalized to real-world rainy images.
Additionally, the ideas of progressive and BLSTMs models
may also be beneficial to other layer separation tasks, e.g.,

DDN [24]

JORDER-E [33] BRN

reflection removal, shadow removal and fences removal, which
will be left for further studies in future work.
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