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Simultaneous Fidelity and Regularization
Learning for Image Restoration

Dongwei Ren, Wangmeng Zuo, David Zhang, Lei Zhang, and Ming-Hsuan Yang

Abstract—Most existing non-blind restoration methods are based on the assumption that a precise degradation model is known. As
the degradation process can only be partially known or inaccurately modeled, images may not be well restored. Rain streak removal
and image deconvolution with inaccurate blur kernels are two representative examples of such tasks. For rain streak removal, although
an input image can be decomposed into a scene layer and a rain streak layer, there exists no explicit formulation for modeling rain
streaks and the composition with scene layer. For blind deconvolution, as estimation error of blur kernel is usually introduced, the
subsequent non-blind deconvolution process does not restore the latent image well. In this paper, we propose a principled algorithm
within the maximum a posterior framework to tackle image restoration with a partially known or inaccurate degradation model.
Specifically, the residual caused by a partially known or inaccurate degradation model is spatially dependent and complexly distributed.
With a training set of degraded and ground-truth image pairs, we parameterize and learn the fidelity term for a degradation model in a
task-driven manner. Furthermore, the regularization term can also be learned along with the fidelity term, thereby forming a
simultaneous fidelity and regularization learning model. Extensive experimental results demonstrate the effectiveness of the proposed
model for image deconvolution with inaccurate blur kernels, deconvolution with multiple degradations and rain streak removal.

Index Terms—Image restoration, blind deconvolution, rain streak removal, task-driven learning.
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1 INTRODUCTION

IMAGE restoration that aims to recover the latent clean image

from a degraded observation is a fundamental problem in low-

level vision. However, the degradation generally is irreversible,

making image restoration an ill-posed inverse problem. While

significant advances have been made in the past decades, it is

challenging to develop proper models for various image restora-

tion tasks.

In general, the linear degradation process of a clean image x
can be modeled as

y = Ax+ n, (1)

where n is additive noise, A is degradation operator, and y is

degraded observation. By changing the settings of the degradation

operator and noise type, they can be applied to different image

restoration tasks. For example, A can be an identity matrix for

denoising, a blur kernel convolution for deconvolution, and a

downsampling operator for super-resolution, to name a few. The

maximum a posterior (MAP) model for image restoration can then

be formulated as

x = argmin
x

λ

2
‖Ax− y‖22 +R(x), (2)

where λ is a trade-off parameter, R(x) is the regularization term

associated with image prior, and the fidelity term is specified by
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degradation A as well as noise n [1]–[3]. Assuming the noise n
is additive white Gaussian, the fidelity term can be characterized

by the �2-norm.

When the degradation operator A is precisely known, noise

and image prior models play two key roles in the MAP-based

image restoration model. Two widely-used types of noise dis-

tributions are Gaussian and Poisson. Other distributions, e.g.,

hyper-Laplacian [4], Gaussian Mixture Model (GMM) [5] and

Mixture of Exponential Power (MoEP) [6], are also introduced for

modeling complex noise. For image prior, gradient-based models,

e.g., total variation [7] and hyper-Laplacian distribution [1], are

first studied due to simplicity and efficiency. Subsequently, patch-

based [2] and non-local similarity [8], [9] models are developed to

characterize more complex and internal dependence among image

patches. Recently, data-driven and task-driven learning methods

have also been exploited to learn regularization from training

images. The approach based on fields of experts (FoE) [10] is

designed to learn the distribution of filter responses on images.

Following the FoE framework, numerous discriminative learning

approaches, e.g., cascaded shrinkage field (CSF) [3], trainable

non-linear reaction diffusion (TNRD) [11], [12] and universal de-

noising network (UNET) [13], use the stage-wise learning scheme

to enhance the restoration performance as well as computational

efficiency.

However, the precise degradation process for most restoration

tasks is not known and thus the degradation process is modeled as

y = Ax+ g(x;B) + n. (3)

In the restoration stage, only the model parameter A is known,

while in the form g(x; ·), the noise type n or the parameters B are

unknown. Here we define this problem as image restoration with
partially known or inaccurate degradation models.
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(a)

Blurry image Ground-truth ROBUST [14] SFARL

(b)

Degraded image Ground-truth DCNN [15] SFARL

(c)

Rainy image Ground-truth DDNET [16] SFARL

Fig. 1: Illustration of the SFARL model on three restoration tasks. (a) In image deconvolution with inaccurate blur kernels, The SFARL method
is effective in relieving the ringing artifacts. (b) For deconvolution along with saturation, Gaussian noise and JPEG compression, the SFARL
model can achieve visually plausible result with less noises than DCNN [15]. (c) For rain streak removal, the SFARL model can produce more
clean image than DDNET [16].

Image deconvolution with inaccurate blur kernels and rain

streak removal are two representative image restoration tasks with

partially known or inaccurate degradation models. Image decon-

volution with an inaccurate blur kernel is a subproblem of blind

deconvolution which generally includes blur kernel estimation and

non-blind deconvolution. In the blur kernel estimation stage, the

kernel error �k generally is inevitable to be introduced by a

specific method [17]–[22]. In the non-blind deconvolution stage,

the degradation model can then be written as

y = k⊗ x+�k⊗ x+ n, (4)

where ⊗ denotes the 2D convolution operator. Thus, the subprob-

lem in the non-blind deconvolution stage is equivalent to image
deconvolution with inaccurate blur kernels. Based on (3), we have

g(x;�k) = �k ⊗ x, but �k is unknown. Existing non-blind

deconvolution methods are sensitive to kernel error and usually

result in ringing and other artifacts [1], [2], as shown in Figure 1.

For rain streak removal, an input image y can be represented

as the composition of a scene image layer x and a rain streak

layer xr . However, it remains challenging to model rain streak

with any explicit formulation. On one hand, a linear summation

y = x+xr is usually used for combining the scene image and rain

streak layers [23], [24]. On the other hand, it has been suggested

[25] that a complex model based on screen blend is more effective

for combining the scene image and rain streak layers,

y = x− x · xr + xr, (5)

where · denotes the element-wise product. By setting g(x;xr) =
−x ·xr , rain streak removal can be treated as an image restoration

problem with a partially known degradation model, i.e., both

g(x;xr) and xr cannot be explicitly modeled in the deraining

stage. As shown in Figure 1, the method [24] is less effective for

modeling rainy scenes, resulting in an over-smooth image with

visible streaks.

Image restoration with partially known or inaccurate degrada-

tion models cannot be simply addressed by noise modeling. From

(3), we define the residual image as

r = y −Ax = g(x;B) + n. (6)

Due to the introduction of g(x;B), even n is white, the residual

r is spatially dependent and complexly distributed. Although

several noise models have been suggested for complex noise

modeling, these are all based on the independent and identically

distributed (i.i.d.) assumption and ineffective for modeling the

spatial dependency of the residual. Furthermore, the characteristics

of r is task specific and there exists no universal model that can

be applied to all problems, thereby making it more challenging to

solve (6).

Recently, deep CNN-based methods have achieved consider-

able progress on some low level vision tasks [26]–[30], e.g., rain

streak removal [16], [31], [32], non-blind deconvolution [15], [33],

[34] and Gaussian denosing [35]. These CNN methods, however,

either do not take partially known degradations into consideration,

or simply address this issue by learning a direct mapping from

degraded image to ground-truth. In comparison with CNN-based

models, we aim at providing a principled restoration framework

for handling partially known or inaccurate degradations.

In this paper, we propose a principled fidelity learning algo-

rithm for image restoration with partially known or inaccurate

degradation models. For either kernel error caused by a specific

kernel estimation method or rain streaks, the resulting residual

r is not entirely random and can be characterized by spatial

dependency and distribution models. Thus, a task-driven scheme is

developed to learn the fidelity term from a training set of degraded

and ground-truth image pairs. For modeling spatial dependence

and complex distribution, the residual r is characterized by a set of

nonlinear penalty functions based on filter responses, leading to a

parameterized formulation of the fidelity term. Such a fidelity term
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is effective and flexible in modeling complex residual patterns

and spatial dependency caused by partially known or inaccurate

degradation for a variety of image restoration tasks. Furthermore,

for different tasks (e.g., rain streak removal and image deconvo-

lution), the residual patterns are also different. With task-driven

learning, the proposed method can adaptively tailor the fidelity

term to specific inaccurate or partially known degradation models.

We show that the regularization term can be parameterized and

learned along with the fidelity term, resulting in our simultaneous

fidelity and regularization learning (SFARL) model. In addition,

we characterize the regularizer by a set of nonlinear penalty

functions on filters responses of clean image. The SFARL model

is formulated as a bi-level optimization problem where a gradient

descent scheme is used to solve the inner task and stage-wise

parameters are learned from the training data. Experimental results

on image deconvolution and rain streak removal demonstrate

the effectiveness of the SFARL model in terms of quantitative

metrics and visual quality (see Figure 1(a)(b)(c)). Furthermore,

for image restoration with precise degradation process, e.g., non-

blind Gaussian denoising, the SFARL model can be used to learn

the proper fidelity term for optimizing visual perception metrics,

and obtain results with better visual quality (see the results in the

supplementary material).

In CSF [3], TNRD [12], and UNET [13], similar parametric

formulation has been adopted to model natural image prior, and

discriminative learning is employed to boost restoration perfor-

mance. However, the degradation in these methods is assumed as

precisely known, and thus the fidelity term is explicitly specified,

e.g., �2-norm for deconvolution with ground-truth kernel. But in

practical applications, the degradation process is usually partially

known, e.g., inaccurately estimated blur kernel, separation of rain

layer and background layer and combination of multiple degra-

dations. In comparison, our SFARL model aims at providing a

principled restoration framework, in which fidelity term is flexible

and effective to model partially known degradation and can be

jointly learned with the regularization terms during training. As a

result, when applied to image restoration with partially known or

inaccurate degradation models, SFARL can be trained to perform

favorably in comparison with TNRD and the state-of-the-arts.

The contributions of this work are summarized as follows:

• We propose a principled algorithm for image restoration

with partially known or inaccurate degradation. Give an

image restoration task, our model can adaptively learn the

proper fidelity term from the training set for modeling

the spatial dependency and highly complex distribution

of the task-specific residual caused by partially known or

inaccurate degradation.

• We present a bi-level optimization model for simultaneous

learning of the fidelity term as well as regularization term,

and stage-wise model parameters for task-specific image

restoration.

• We carry out experiments on rain streak removal, image

deconvolution with inaccurate blur kernels and deconvo-

lution with multiple degradations to validate the effective-

ness of the SFARL model.

2 RELATED WORK

For specific vision tasks, numerous methods have been proposed

for image deconvolution with inaccurate blur kernels and rain

streak removal. However, considerably less effort has been made

to address image restoration with partially known or inaccurate

degradation models. In this section, we review related topics most

relevant to this work, including noise modeling, discriminative im-

age restoration, image deconvolution with inaccurate blur kernels,

and rain streak removal.

2.1 Noise Modeling

For vision tasks based on robust principal component analysis

(RPCA) or low rank matrix factorization (LRMF), noise is often

assumed to be sparsely distributed and can be characterized by

�p-norms [4], [36]. However, the noise in real scenarios is usually

more complex and cannot be simply modeled using �p-norms.

Consequently, GMM and its variants have been used as universal

approximations for modeling complex noise. In RPCA models,

Zhao et al. [37] use a GMM model to fit a variety of noise types,

such as Gaussian, Laplacian, sparse noise and their combinations.

For LRMF, GMM is used to approximate unknown noise, and its

effectiveness has been validated in face modeling and structure

from motion [5]. In addition, a GMM model is also extended

for noise modeling by low rank tensor factorization [38], and

generalized to the Mixture of exponential power (MoEP) scheme

[6] for modeling complex noise. To determine the parameters of a

GMM model, the Dirichlet process has been suggested to estimate

the number of Gaussian components under variational Bayesian

framework [39]. Recently, the weighted mixture of �1-norm, �2-

norm [40] and Gaussian [41], [42] models have also been used for

blind denoising with unknown noise.

However, noise modeling cannot be readily used to address

image restoration with partially known or inaccurate degradation

models. The residual r caused by inaccurate degradation is not

i.i.d. Thus, both spatial dependency and complex noise distribution

need to be considered to characterize the residual.

2.2 Discriminative Image Restoration

In a MAP-based image restoration model, the regularization term

is associated with a statistical prior and assumed to be learned

solely based on clean images in a generative manner, e.g., K-

SVD [43], GMM [2], and FoE [10]. Recently, discriminative

learning has been extensively studied in image restoration. In

general, discriminative image restoration aims to learn a fast

inference procedure by optimizing an objective function using a

training set of the degraded and ground-truth image pairs. One

typical discriminative learning approach is to combine existing

image prior models with truncated optimization procedures [44],

[45]. For example, CSF [3], [46] uses truncated half-quadratic

optimization to learn stage-wise model parameters of a modified

FoE. On the other hand, TNRD [11], [12] unfolds a fixed number

of gradient descent inference steps. Non-parametric methods, such

as regression tree fields (RTF) [44], [45] and filter forests [47], are

also used for modeling image priors.

Existing discriminative image restoration methods, however,

are all based on the precise degradation assumption. These algo-

rithms focus on learning regularization terms in a discriminative

framework such that the models can be applied to arbitrary images

and blur kernels. In contrast, we propose a discriminative learning

algorithm that considers both fidelity and regularization terms, and

apply it to image restoration with partially known or inaccurate

degradation models.
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2.3 Image Deconvolution with Inaccurate Blur Kernels

Typical blind deconvolution approaches consist of two stages: blur

kernel estimation and non-blind deconvolution. Existing methods

mainly focus on the first stage [18], [19], [22], [48], and con-

siderable attention has been paid to blur kernel estimation. For

the second stage, conventional non-blind deconvolution methods

usually are used to restore the clean image based on the estimated

blur kernels. Despite significant progress has been made in blur

kernel estimation, errors are inevitable introduced after the first

stage. Furthermore, non-blind deconvolution methods are not

robust to kernel errors, and artifacts are likely to be introduced

or exacerbated during deconvolution [1], [2].

One intuitive solution is to design specific image priors to

suppress artifacts [49]–[52]. To the best of our knowledge, there

exists only one attempt [14] to implicitly model kernel error in

fidelity term,

x = argmin
x

λ

2
‖k⊗ x− y + z‖2 +R(x) + τ‖z‖1. (7)

Here the residual r is defined as r = z+n, where z is associated

with the �1-norm, and n is additive white Gaussian noise. Howev-

er, a method based on z with the �1-norm does not model the spa-

tial dependency of residual signals. The method [14] alleviates the

effect of kernel errors at the expense of potential over-smoothing

restoration results. A recent deep CNN-based approach, i.e., FCN

[34], receives multiple inputs with complementary information to

produce high quality restoration result. But FCN relies on tuning

parameters of non-blind deconvolution method to provide proper

network inputs. In this work, we focus on the second stage of blind

deconvolution, and propose the SFARL model to characterize the

kernel error of a specific kernel estimation method.

2.4 Rain Streak Removal

Rain streak and scene composition models are two important

issues for removing rain drops from input images. Based on the

linear model y = x + xr , the MAP-based deraining model can

be formulated as

x = argmin
x

λ
2 ‖y − x− xr‖2 +R(x) +Q(xr)

s.t. ∀i, 0 ≤ xi ≤ yi, 0 ≤ xri ≤ yi,
(8)

where Q(·) denotes the regularization term of the rain streak

layer, and the inequality constraints are introduced to obtain non-

negative solutions of x and xr [24].

In [23], hand-crafted regularization is employed to impose

smoothness on the image layer and low rank on the rain streak

layer. In [24], both image and rain streak layers are modeled

as GMMs that are separately trained on clean patches and rain

streak patches. Based on the screen blend model, Luo et al. [25]

use the discriminative dictionary learning scheme to separate rain

streaks by enforcing that two layers need to share fewest dictionary

atoms. Recently, specifically designed CNN models [16], [32]

have achieved progress in rain streak removal. Instead of using

explicit analytic models, the SFARL method is developed based on

a data-driven learning approach to accommodate the complexity

and diversity of rain streak and scene composition models.

3 PROPOSED ALGORITHM

We consider a class of image restoration problems, where the

degradation model is partially known or inaccurate but a training

set of degraded and ground-truth image pairs is available. To

handle these problems, we use a flexible model to parameterize the

fidelity term caused by partially known or inaccurate degradation.

For a given problem, a task-driven learning approach can then be

developed to obtain a task-specific fidelity term from training data.

In this section, we first present our method for parameter-

izing the fidelity term to characterize the spatial dependency

and complex distribution of the residual images. In addition,

the regularization term is also parameterized, resulting in our

simultaneous fidelity and regularization learning model. Finally,

we propose a task-driven manner to learn the proposed model

from training data.

3.1 Fidelity Term

The fidelity term is used to characterize the spatial dependency and

highly complex distribution of the residual image r = g(x;B)+n.

On one hand, the popular explicit formulation, e.g., �2-norm

and �1-norm, cannot model the complex distribution of residual

image r. Due to the i.i.d. assumption, the existing noise modeling

approaches, e.g., GMM [37] and MoEP [6], also cannot be readily

adopted to model spatial dependency in fidelity term. On the

other hand, the residual r generally is spatially dependent and

complicatedly distributed. Motivated by the success of discrim-

inative regularization learning [3], [11], we also use a set of

linear filters {pi}Nf

i=1 with diverse patterns to model the spatial

dependency in g(x;B). Moreover, due to the effect of n and

its combination with g(x;B), the filter responses {r ⊗ pi}Nf

i=1

remain of complex distribution. Therefore, a set of non-linear

penalty functions {Di}Nf

i=1 is further introduced to characterize

the distribution of filter responses.

To sum up, we propose a principled residual modeling in the

fidelity term as follows,

F(x) = λ
N∑
j=1

Nf∑
i=1

Di

(
(pi ⊗ (Ax− y))j

)
, (9)

where A is the degradation operator defined in (1) and ⊗ is

the 2D convolution operator. In the proposed fidelity term, the

parameters include Θf = {λ,pi,Di}Nf

i=1. When Nf = 1, p1 is

delta function and D1 is the squared �2-norm, the proposed model

(9) is equivalent to the standard MAP-based model in (2).

Due to the introduction of linear filters {pi}Nf

i=1 and penalty

functions {Di}Nf

i=1, the proposed fidelity term can describe the

complex patterns in residual r caused by partially known or

inaccurate degradation models. Furthermore, our fidelity model

is flexible and applicable to different tasks. With proper training,

it can be specified to certain image restoration tasks, such as rain

streak removal, image deconvolution with inaccurate blur kernels.

It is worth noting that the fidelity term in (9) can be regarded

as a special form of convolution layer in CNN. Nonetheless, the

fidelity term (9) can retain better interpretability and flexibility in

characterizing residual r. In particular, the learned pis and Dis are

closely related to the characteristics of redidual r (see an example

in the supplementary material). Moreover, the distribution of

pi ⊗ r generally is much more complex, and cannot be simply

characterized by ReLU and its variants in conventional CNN.
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3.2 Regularization Term
To increase modeling capacity on image prior, the regularization

term is further parameterized as

R(x) =
N∑
j=1

Nr∑
i=1

Ri

(
(fi ⊗ x)j

)
, (10)

where fi is the i-th linear filter, Ri is the corresponding non-linear

penalty function, and Nr is the number of linear filters and penalty

functions for the regularization term. The parameters for the reg-

ularization term include Θr = {fi,Ri}Nr
i=1. The proposed model

is the generalization of the FoE [10] model by parameterizing

the regularization term with both the filters and penalty functions.

Similar models have also been used in discriminative non-blind

image restoration [3], [11], [13].

3.3 SFARL Model
Given a specific image restoration task, the parameters for the

fidelity and regularization terms need to be specified. As a large

number of parameters are involved in F(x) and R(x), it is not

feasible to manually determine proper values. In this work, we

propose to learn the parameters of both fidelity and regularization

terms in a task-driven manner.

Denote a training set of S samples by {ys,x
gt
s }Ss=1, where ys

is the s-th degraded image and xgt
s is the corresponding ground-

truth image. The parameters Θ = {Θf ,Θr} can be learned by

solving the following bi-level optimization problem,

min
Θ

L(Θ) =
S∑

s=1
� (x∗

s,x
gt
s )

s.t. x∗
s = argmin

x∈X

N∑
j=1

Nr∑
i=1

Ri

(
(fi ⊗ x)j

)

+λ
N∑
j=1

Nf∑
i=1

Di

(
(pi ⊗ (Ax−ys))j

)
,

(11)

where X is the feasible solution space. For image deconvolution

with an inaccurate blur kernel, the feasible solution is only con-

strained to be in real number space, i.e., X = {x | x ∈ R
N}. For

rain streak removal, additional constraints on the feasible solution

space are required, i.e., X = {x | ∀i, 0 ≤ xi ≤ yi}, where xi

(and yi) is the i-th element of clean image x (and rainy image

y). In principle, the trade-off parameter λ can be absorbed into

the non-linear transform Di and removed from the model (11).

However, the trade-off between the fidelity and regularization

terms cannot be easily made due to that the scales of Di and Ri

vary for different restoration tasks, thereby making it necessary to

include λ in (11).

The loss function �(·, ·) measures the dissimilarity between

the output of the SFARL model and the ground-truth image.

One representative loss used in discriminative image restoration

is based on the mean-squared error (MSE) [11],

�
(
x,xgt

)
=

1

2
‖x− xgt‖2. (12)

For image restoration when the precise degradation process is

known, the optimal fidelity term in terms of MSE becomes

the negative log-likelihood. The standard MAP model x =
argmin

x

λ
2 ‖Ax − y‖2 + R(x) can then be used in the inner

loop of the bi-level optimization task. Thus, the MSE loss is

only applicable to learning fidelity term for image restoration with

partially known or inaccurate degradation models.

In this work, we use the visual perception metric, e.g., negative

SSIM [53], [54], as the loss function,

�
(
x,xgt

)
= −SSIM

(
x,xgt

)
. (13)

The reason of using negative SSIM is two-fold. On one hand, it is

known that SSIM is closely related to visual perception of image

quality, and minimizing negative SSIM is expected to benefit the

visual quality of restoration result. On the other hand, even for

image restoration with precise degradation process, the negative

log-likelihood will not be the optimal fidelity term when the nega-

tive SSIM loss is used. Thus the residual model (9) can be utilized

to learn proper fidelity term from training data for either image

deconvolution with inaccurate blur kernels, rain streak removal,

or Gaussian denoising. In addition, the experimental results also

validate the effectiveness of negative SSIM and residual modeling

in terms of both visual quality and perception metric.

4 SFARL TRAINING

In this section, we first present an iterative solution to inner task

in the bi-level optimization problem. The SFARL model is then

parameterized and gradient-based optimization algorithm can be

used for training. The SFARL model is trained by sequentially

performing greedy training in Algorithm 2 and joint fine-tuning in

Algorithm 3. Finally, the derivations of gradients for the greedy

and end-to-end training processes are presented.

4.1 Iterative Solution to Inner Optimization Task
The inner task in (11) implicitly defines a function x∗(Θ) on the

model parameters. As the optimization problem is non-convex, it

is difficult to obtain the explicit analytic form of either x∗(Θ) or
∂x∗(Θ)

∂Θ . In this work, we learn Θ by considering the truncation of

an iterative optimization algorithm [3], [11], [12], [46]. Further-

more, the stage-wise model parameters are also used to improve

image restoration [3], [11].

To solve (11), the updated solution xt+1 can then be written

as a function of xt and Θ, i.e., xt+1(Θ;xt). Suppose that

{(Θ1,x1), ..., (Θt,xt)} are known. The stage-wise parameters

Θt+1 can then be learned by solving the following problem,

min
Θt+1

L(Θt+1) =
S∑

s=1

�
(
xt+1
s (Θt+1;xt),xgt

s

)
. (14)

Here we use a gradient descent method to solve the inner opti-

mization loop, and xt+1(Θ;xt) can be written as

xt+1(Θt+1;xt) = xt −
Nr∑
i=1

f̄ t+1
i ⊗φt+1

i (f t+1
i ⊗xt)

− λt+1

Nf∑
i=1

A�p̄t+1
i ⊗ ϕt+1

i

(
pt+1
i ⊗(Axt − y

))
,

(15)

where the influence functions are defined as ϕi = D′
i and

φi = R′
i. These functions are entry-wisely performed on a vector

or matrix. In addition, p̄i and f̄i are filters by rotating pi and

fi 180 degrees, respectively. After each gradient descent step,

xt+1 is projected to the feasible solution space X . The inference

procedure is shown in Algorithm 1.

We use ADAM [55] to solve the optimization problem in (14).

Therefore, we need to present the parameterization of the solution

in (15) and derive the gradients for the greedy and end-to-end

learning processes.
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Algorithm 1 SFARL

Input: Current result x0, degraded image y, degradation operator A, model
parameters {Θt}Tt=1

Output: Restoration results x
1: for t = 0 to T − 1 do
2: Compute xt+1 using (15)
3: end for
4: x = {x1,x2, ...,xT }

Algorithm 2 Greedy Training

Input: Training data {yi,x
gt
i ,Ai}Ni=1

Output: SFARL parameters {Θt}Tt=1
1: Set stage number T , epoch number E, mini-batch size n, mini-batch

number M = N/n
2: Initialize: {x0

i |x0
i = yi}Ni=1, {Θt}Tt=1

3: for t = 0 to T − 1 do
4: for epoch = 1 to E do
5: for m = 0 to M − 1 do
6: Prepare m-th mini-batch data: {yi,x

gt
i ,Ai}m×n+n

i=m×n+1
7: Forward samples in m-th mini-batch:

xt+1
i = SFARL(xt

i,yi,Ai,Θ
t+1)

8: Compute gradients for stage t+ 1: 1
n

∑
i
∂�(xt+1

i ,x
gt
i )

∂Θt+1

9: Use Adam to optimize stage t+ 1 parameters Θt+1

10: end for
11: end for
12: end for

Algorithm 3 Joint Fine-tuning

Input: Training data {yi,x
gt
i ,Ai}Ni=1, model parameters {Θt}Tt=1

Output: SFARL parameters {Θt}Tt=1
1: Set epoch number E, mini-batch size n, mini-batch number M = N/n
2: Initialize {x0

i |x0
i = yi}Ni=1

3: for epoch = 1 to E do
4: for m = 0 to M − 1 do
5: Prepare m-th mini-batch data: {yi,x

gt
i ,Ai}m×n+n

i=m×n+1
6: Forward samples in m-th mini-batch:

{x1
i ,x

2
i , ...,x

T
i } = SFARL(x0

i ,yi,Ai, {Θt}Tt=1)

7: Compute gradients for each stage: { 1
n

∑
i
∂�(xT

i ,x
gt
i )

∂Θt }Tt=1

8: Use Adam to end-to-end optimize parameters {Θt}Tt=1
9: end for

10: end for

4.2 Parameterization

Similar to [3], [11], we use the weighted summation of Gaussian

RBF functions to parameterize the influence functions in regular-

ization term

φi(z) =
M∑
j=1

πij exp
(
−γ

2
(z − μj)

2
)
, (16)

and in fidelity term

ϕi(z) =
M∑
j=1

wij exp
(
−γ

2
(z − μj)

2
)
, (17)

where πij and wij are weight coefficients, μj is mean value and

γ is precision.

The filters fi in regularization term and pi in fidelity term

are specified as linear combination of DCT basis with unit norm

constraint,

fi = Br
si

‖si‖2 and pi = B ci
‖ci‖2 , (18)

where B is complete DCT basis, Br is DCT basis by excluding

the DC component, si and ci are coefficients for regularization

term and fidelity term respectively.

In our implementation, we utilize filters with size 7 × 7 in

both regularization term and fidelity term. Thus, the numbers

of non-linear functions and filters can be accordingly set, i.e.,

Nr = 48 for regularization term, and Nf = 49 for fidelity

term. The numbers of Gaussian functions are fixed to 63 for both

fidelity and regularization terms, i.e., M = 63. To handle the

boundary condition in convolution operation, the image is padded

for processing and only the valid region is cropped for output.

4.3 Greedy Training
The SFARL model is firstly trained stage-by-stage. To learn the

model parameters of stage t+ 1, we need to compute gradient by

the chain rule,

∂�(xt+1,xgt)

∂Θt+1
=

∂xt+1

∂Θt+1

∂�(xt+1,xgt)

∂xt+1
. (19)

4.3.1 Deviation of ∂�(xt+1,xgt)
∂xt+1

When the loss function is specified as MSE, i.e., �
(
xt+1,xgt

)
=

1
2‖xt+1 − xgt‖2, the gradient can be simply computed as

∂�(xt+1,xgt)

∂xt+1
= xt+1 − xgt. (20)

Visual perception metric, i.e., negative SSIM
When the loss function is specified as visual perception metric,

i.e., �
(
xt+1,xgt

)
= −SSIM(xt+1,xgt) [53], [54], we give

the gradient deviation as follows. To distinct the entire image

and small patch, only in this subsection we use X and Y as

entire image and reference image respectively. The SSIM value

is computed based on the small patches xi and yi

SSIM (X,Y) =
1

Ns

Ns∑
i=1

ssim (xi,yi), (21)

where Ns is the number of patches. The value on each patch is

computed as

ssim (x,y) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) , (22)

where μx = 1
Np

(
1�x

)
is mean value of patch x, σ2

x =
1

Np−1 (x− μx)
�
(x− μx) is variance of patch x, and σxy =

1
Np−1 (x− μx)

�
(y − μy) is covariance of pathes x and y, and

C1, C2 are some constant values. Let us define A1 = 2μxμy+C1,

A2 = 2σxy +C2, B1 = μ2
x+μ2

y +C1 and B2 = σ2
x+σ2

y +C2.

Then we have S (x,y) = A1A2

B1B2
.

The gradient of negative SSIM is

∂ (−SSIM (X,Y))

∂X
= − 1

Ns

Ns∑
i=1

∂ (ssim (xi,yi))

∂Y

= − 1

Ns

Ns∑
i=1

∂ (ssim (x,y))

∂X

∣∣∣∣
x=xi,y=yi

,

(23)

where

∂ (ssim (x,y))

∂x
=

2

NpB2
1B

2
2

(A1B1 (B2x−A2y)

+ B1B2 (A2 −A1)μx1+A1A2(B1 −B2)μy1) .
(24)
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For simplicity, we hereafter use e to denote
∂�(xt+1,xgt)

∂xt+1 for both

MSE and negative SSIM.

4.3.2 Deviation of ∂xt+1

∂Θt+1

Since the parameterization of fidelity term and regularization term

is similar, we only use the fidelity term as an example, and it is

easy to extend it to the regularization term.

Weight parameter λ
The gradient with respect to λ is

∂xt+1

∂λt+1
= −

⎛
⎝Nf∑

i=1

A�p̄t+1
i ⊗ ϕt+1

i

(
pt+1
i ⊗ (Axt − y

))⎞⎠
�

. (25)

The overall gradient with respect to λ is

∂�(xt+1,xgt)

∂λt+1
= −

⎛
⎝Nc∑

i=1

A�p̄t+1
i ⊗ ϕt+1

i

(
pt+1
i ⊗ (Axt − y

))⎞⎠
�

e.

(26)

Filter pi

The function xt+1 with respect to each filter pi can be simplified

to,

xt+1 = −λt+1A�p̄t+1
i ⊗ ϕt+1

i

(
pt+1
i ⊗ (Axt − y

))
+ C,

(27)

where C denotes a constant which is independent with pi. Let

us define u = −A�p̄t+1
i and v = ϕt+1

i

(
pt+1
i ⊗ (Axt − y)

)
.

Thus, we can obtain the gradient deviation as

∂xt+1

∂pt+1
i

=
∂u

∂pt+1
i

∂xt+1

∂u
+

∂v

∂pt+1
i

∂xt+1

∂v
. (28)

Based on the convolution theorem [56], we have

u⊗ v ⇔ Uv ⇔ Vu, (29)

where U and V are sparse convolution matrices of u and v,

respectively. Thus, the first term in (28) is

∂u

∂p
(t)
i

∂x(t)

∂u
= −R�

180AV�, (30)

where R180 rotates matrix by 180 degrees.

For the second term, we introduce an auxiliary variable b =
Axt − y, z = pt+1

i ⊗ b, and we have v = ϕt+1
i (z). We note

that

z = pt+1
i ⊗ b ⇔ Bpt+1

i .

Therefore, we have

∂v

∂pt+1
i

∂xt+1

∂v
=

∂z

∂pt+1
i

∂v

∂z

∂xt+1

∂v
= −B�ΛU�, (31)

where Λ = diag
(
ϕt+1′
i (z1), ..., ϕ

t+1′
i (zN )

)
is a diagonal ma-

trix. The gradient of ϕi(z) is

ϕ
′
i(z) = −γ

M∑
j=1

wij exp
(
−γ

2
(z − μj)

2
)
(z − μj) . (32)

Since the filter is specified as linear combination of DCT basis,

one need to derive the gradient with respect to the combination

coefficients c, i.e.,
∂�

∂c
=

∂p

∂c

∂�

∂p
. (33)

By introducing v = c
‖c‖2

, we then have

∂p

∂c
=

∂v

∂c

∂p

∂v
=

∂v

∂c
B�

=

(
I

‖c‖2 +
∂(c�c)−

1
2

∂c

)
B�

=

(
I

‖c‖2 +
∂(c�c)
∂c

(−1

2

1

‖c‖32
)c�

)
B�

=

(
I

‖c‖2 + 2c(−1

2

1

‖c‖32
)c�

)
B�

=
1

‖c‖2

(
I− c

‖c‖2
c�

‖c‖2

)
B�.

(34)

Finally, the overall gradient with respect to combination coef-

ficients ct+1
i is given by

∂�

∂ct+1
i

=− 1

‖ct+1
i ‖2

(
I− ct+1

i

‖ct+1
i ‖2

(ct+1
i )�

‖ct+1
i ‖2

)
B�

(
B�ΛU�+R�

180AV�
)
e.

(35)

Non-linear function ϕi

We first reformulate the function xt+1 with respect to ϕi into the

matrix form

xt+1 ∼ −λt+1A�(Pt+1
i )�ϕt+1

i (b) , (36)

where b = Pt+1
i (Axt − y). Therefore, the column vector

ϕt+1
i (b) can be reformulated into the matrix form,

ϕt+1
i (b) = G(b)wt+1

i , (37)

where wi is the vectorized version of parameters wij , matrix

G(b) is

G(b)=

⎡
⎢⎢⎣
exp(− γ

2
(b1−μ1)2) exp(− γ

2
(b1−μ2)2) · · · exp(− γ

2
(b1−μM )2)

exp(− γ
2
(b2−μ1)2) exp(− γ

2
(b2−μ2)2) · · · exp(− γ

2
(b2−μM )2)

.

.

.
.
.
.

. . .
.
.
.

exp(− γ
2
(bN−μ1)2) exp(− γ

2
(bN−μ2)2) · · · exp(− γ

2
(bN−μM )2)

⎤
⎥⎥⎦ .

Thus, we can get

∂xt+1

∂wt+1
i

= −λt+1G�Pt+1
i A, (38)

and finally the overall gradient with respect to wt+1
i is

∂�

∂wt+1
i

= −λt+1G�Pt+1
i Ae. (39)

In our implementation, we do not explicitly compute the matrix

U,V,B, since they can be efficiently operated via 2D convolu-

tion.

4.4 Joint Fine-tuning
Once the greedy training process for each stage is carried out, an

end-to-end training process is used to fine-tune all the parameters

across stages. The joint training loss function is defined as

L(Θ1, ...,ΘT ) =
S∑

s=1

�
(
xT
s ,x

gt
s

)
, (40)

where T is the maximum iteration number. The gradient can be

computed by the chain rule,

∂�(xT ,xgt)

∂Θt
=

∂xt

∂Θt

∂xt+1

∂xt
· · · ∂�(x

T ,xgt)

∂xT
. (41)
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where only ∂xt+1

∂xt need to be additionally computed. By reformu-

lating the solution in the matrix form,

xt+1 = xt −
Nr∑
i=1

(Ft+1
i )�φt+1

i (Ft+1
i xt)

−λt+1

Nf∑
i=1

A�(Pt+1
i )�ϕt+1

i

(
Pt+1

i

(Axt − y
))

,

(42)

the gradient can be computed as

∂xt+1

∂xt
= I−

Nr∑
i=1

(Ft+1
i )�ΓiF

t+1
i −

Nf∑
i=1

A�(Pt+1
i )�ΛiP

t+1
i A,

(43)

where Γi = diag
(
φt′
i (z1), ..., φ

t′
i (zN )

)
is also a diagonal matrix.

Once ∂xt+1

∂xt is computed, the overall gradient can be computed

by the chain rule and the other gradient parts in (41) can be

borrowed from greedy training.

4.4.1 Training Procedure
Given a training dataset, the training of SFARL is to sequentially

run greedy training as Algorithm 2 and joint fine-tuning as Algo-

rithm 3. Algorithm 1 lists the inference of SFARL given model

parameters, in which all the intermediate results are recorded for

backward propagation during training. In greedy training Θt+1,

parameters {Θi}ti=1 in previous t stages are fixed, and only gra-

dients in stage t+1 are computed and are fed to ADAM algorithm.

In joint fine-tuning, gradients in each stage are computed, and are

fed to ADAM algorithm to optimize the parameters {Θt}Tt=1 for

all the stages.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed SFARL algorithm on

several restoration tasks, i.e., image deconvolution either with an

inaccurate blur kernel or with multiple degradations, rain streak

removal from a single image. SFARL can also be evaluated on

Gaussian denoising, and we have presented the results in the sup-

plementary material. In our experiments, 7× 7 filters are adopted

in both fidelity and regularization terms. As for stage number, we

recommend to set it based on the convergence behavior during

greedy training, and empirically use 10-stage SFARL for image

deconvolution, and 5-stage SFARL for rain streak removal and

Gaussian denoising. During training SFARL, greedy training ends

with 10 epoches for each stage, and then the parameters are

further jointly fine-tuned with 50 epochs. We use ADAM [55]

to optimize these SFARL models with learning rate 1 × 10−3,

β1 = 0.9 and β2 = 0.99. Using rain streak removal as an

example, it takes about 19 hours to train a SFARL model on a

computer equipped with a GTX 1080Ti GPU. The SFARL models

are quantitatively and qualitatively evaluated and compared with

state-of-the-art conventional and deep CNN-based approaches.

More experimental settings and results are included in the

supplementary material. The source code is available at https:

//github.com/csdwren/sfarl.

5.1 Deconvolution with Inaccurate Blur Kernels
We consider the blind deconvolution task and use two blur kernel

estimation methods, i.e., Cho and Lee [48] and Xu and Jia [18],

for experiments. For each estimation approach, we evaluate the

performance of SFARL for handling approach-specific blur kernel

estimation error. To construct the training dataset, we use eight

blur kernels [57] on 200 clean images from the BSD dataset [58].

The Gaussian noise with σ = 0.25 is added to generate the blurry

images. The methods by Cho and Lee [48] and Xu and Jia [18]

are used to estimate blur kernels. Thus, we have 1,600 training

samples for each blur kernel estimation approach. To ensure the

training sample quality, we randomly select 500 samples with error

ratio [57] above 3 for each image deconvolution method.

TABLE 1: Quantitative SSIM results on the dataset by Levin et al. [57].

Kernel estimation EPLL [2] ROBUST [14] IRCNN [33] SFARL

Cho and Lee [48] 0.8801 0.8659 0.8825 0.8903
Xu and Jia [18] 0.9000 0.8917 0.9023 0.9164

On the widely used synthetic dataset, i.e., Levin et al. [57], we

compare our SFARL with EPLL [2], ROBUST [14] and IRCNN

[33]. The testing dataset includes 4 clean images and 8 blur

kernels. The blur kernels are estimated by Cho and Lee [48] and

Xu and Jia [18]. Table 1 lists the average SSIM values of all

evaluated methods on the dataset by Levin et al. [57]. Overall, the

SFARL algorithm performs favorably against the other methods

in terms of SSIM. From Table 1, we also have the following

observations. First, the SFARL algorithm models the residual

images by specific blur kernel estimation method to improve

restoration result. For each blur kernel estimation method, what

we need to do is to retrain the SFARL model from the synthetic

data. Second, when the estimated blur kernel is more accurate

(e.g., Xu and Jia [18]), better quantitative performance indexes are

also attained by our SFARL.

We evaluate the SFARL algorithm against the state-of-the-art

methods on a synthetic and a real blurry images in Figures 2

and 3. The blur kernels are estimated using the method by Xu

and Jia [18]. As the blur kernel can be accurately estimated in

Fig. 2, all the evaluated methods perform well and the SFARL

algorithm restores more texture details. On the other hand, the

estimated blur kernel is less accurately estimated in Fig. 3. Among

all the evaluated methods, the deblurred image by the SFARL

algorithm is sharper with fewer ringing effects than those by

the other methods. We note that IRCNN [33] use the �2-norm

in the fidelity term and the ROBUST scheme [14] introduces

an �1-norm regularizer on the residual z caused by kernel error.

However, both �2-norm and �1-norm are limited in modeling the

complex distribution of the residual, and neither GMM prior in

EPLL nor deep CNN prior in IRCNN cannot well compensate the

effect caused by inaccurate blur kernels. Thus, the performance

gain of the SFARL model can be attributed to its effectiveness in

characterizing the spatial dependency and complex distribution of

residual images.

5.2 Deconvolution with Multiple Degradations
We consider a more challenging deconvolution task [15], in which

blur convolution is followed by multiple degradations including

saturation, Gaussian noise and JPEG compression. SFARL is

compared with DCNN [15], Whyte [59], IRCNN [33] and SRN

[60]. Following the degradation steps in [15], 500 clean images

from BSD dataset [58] are used to synthesize training dataset, on

which SFARL and SRN are trained. Since only testing code of

DCNN [15] and 30 testing images on a disk kernel with radius 7

(Disk7) are released, SFARL is only evaluated on Disk7 kernel.

From Table 2, SFARL performs favorably in terms of average

PSNR and SSIM. The results by SFARL are also visually more

pleasing, while the results by the other methods suffer from visible

noises and artifacts, as shown in Fig. 4. It is worth noting that
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Blurry image EPLL [2] ROBUST [14] IRCNN [33] SFARL

Fig. 2: Visual quality comparison on Levin et al.’s dataset [57].

Blurry images IRCNN [33] ROBUST [14] SFARL

Fig. 3: Deblurring results on real blurry images, in which blur kernels are estimated by Xu and Jia [18].

Blurry image Whyte [59] DCNN [15]

IRCNN [33] SRN [60] SFARL

Fig. 4: Visual quality comparison on deconvolution along with Gaussian noise, satature and JPEG compression.

IRCNN works well in reducing blurring, but magnifies other

degradations to yield ringing effects and noises. SRN is an up-

to-date deep motion deblurring network, but is still suffering

from visible noises and artifacts, since the ill-poseness caused

by disk blur is usually more severe than motion blur. Thus, we

conclude that SFARL is able to model these multiple degradations

in fidelity term. Moreover, it should be noted that DCNN needs to

initialize deconvolution sub-network using inverse kernels, while

our SFARL is much easier to train given proper training dataset.

TABLE 2: Quantitative comparison on deconvolution with multiple degrada-
tions [15].

Method Whyte [59] DCNN [15] IRCNN [33] SRN [60] SFARL

PSNR 26.35 26.50 23.84 26.46 26.66
SSIM 0.8307 0.8442 0.6673 0.8447 0.8532

5.3 Singe Image Rain Streak Removal

To train the SFARL model for rain streak removal, we construct

a synthetic rainy dataset. We randomly select 100 clean outdoor

images from the UCID dataset [63], and use the Photoshop func-

tion (http://www.photoshopessentials.com/photo-effects/rain/) to

generate 7 rainy images at 7 random rain scales and different

orientations ranged from 60 to 90 degrees. The training dataset

contains 700 images with different rain orientations and scales.

We evaluate the SFARL method with the state-of-the-art algo-

rithms including SR [61], LRA [23], GMM [24], and the CNN

[62], on a the synthetic dataset [24]. The dataset consists of 12

rainy images with orientation ranged from left to right. Table 3

shows that the SFARL algorithm achieves the highest SSIM values

for each test image. Fig. 5 shows rain streak removal results by all
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Rainy image SR [61] LRA [23]

GMM [24] CNN [62] SFARL

Fig. 5: Rain streak removal results of five evaluated methods on a synthetic image in [24].

TABLE 3: Deraining results on synthetic rainy images in [24] in terms of SSIM

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Avg.

SR [61] 0.74 0.79 0.84 0.77 0.63 0.73 0.82 0.77 0.74 0.74 0.65 0.77 0.75
LRA [23] 0.83 0.88 0.76 0.96 0.92 0.93 0.94 0.81 0.90 0.82 0.85 0.80 0.87
GMM [24] 0.89 0.93 0.92 0.94 0.90 0.95 0.96 0.90 0.91 0.90 0.86 0.92 0.91
CNN [62] 0.75 0.79 0.71 0.89 0.76 0.80 0.85 0.77 0.81 0.76 0.79 0.73 0.78

SFARL 0.93 0.93 0.92 0.95 0.97 0.94 0.98 0.95 0.97 0.98 0.95 0.97 0.95

the evaluated algorithms on a synthetic rainy image. The results by

the SFARL and GMM algorithms are significantly better than the

other methods. However, the result by the GMM method still has

visible rain streaks, while the SFARL model recovers satisfying

clean image.

Furthermore, we compare SFARL with a recent deep CNN-

based method, i.e., DDNET [16]. The authors [16] provide a

training dataset of 12,600 rainy images and a testing dataset of

1,400 rainy images (Rain1400). We train SFARL on the training

dataset, and on the testing dataset, SFARL is quantitatively and

qualitatively compared with DDNET. From Table 4, SFARL

obtains better PSNR and SSIM values on Rain1400. In Fig. 6,

SFARL produces satisfactory deraining results, while rain streaks

are still visible in the results by DDNET.

TABLE 4: Average PSNR/SSIM comparison on Rain1400 [16] and Rain100L
[32]. Both SFARL and DDNET are trained for Rain1400, and are directly used
to process Rain100L to validate generalization ability.

Method DDNET [16] SFARL

Rain1400 [16] 29.91/0.9099 31.37/0.9188
Rain100L [32] 29.12/0.9012 29.73/0.9181

Moreover, we evaluate the SFARL model on real world rainy

images against the state-of-the-art methods. Since the rain in

second image of Fig. 7 is too heavy to see rain streaks, we

first use the dehazing method [64] before applying a deraining

algorithm. On both test images, the SFARL algorithm performs

better than DDNET [16] and GMM [24]. For real rainy images,

the image formation process is complex and may not be well

characterized by either linear additive model nor screen blend

model. Nevertheless, due to the flexibility of the fidelity term

in modeling spatially dependent and highly complex patterns,

the SFARL model is more effective in modeling the complex

degradation process and achieving satisfactory deraining result.

5.4 Ablation Study

In this section, we take rain streak removal as an example to

analyze training convergence and effect of negative SSIM loss. We

also evaluate the generalization and transferring ability of SFARL.

Besides, the visualization of learned filters, interpretability and

flexibility of fidelity term as well as more discussions on stage

number setting are presented in the supplementary material.

5.4.1 Convergence
As shown in Fig. 8, average PSNR of each epoch is computed

to form the converge curves in the 5 stages of greedy training

and the final joint fine-tuning. In greedy training, SFARL can

stably converge in every stage, in which notable performance

gains can be attained in the first two stages, while the PSNR

increases marginally in the last 3 stages. After greedy training,

SFARL is further jointly fine-tuned, and empirically converge to a

much better solution.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Joint Training

Fig. 8: Empirical convergence of a 5-stage SFARL for rain streak removal
during greedy training and joint fine-tuning.

5.4.2 Loss function
To verify the effect of negative SSIM loss, we train two SFARL

models, which share the same settings except training loss, i.e.,

one is trained by minimizing MSE loss (SFARL-MSE), while the

other one by minimizing negative SSIM loss. These two SFARL

models are trained and tested on the datasets provided by [16].

Form Table 5, it is reasonable to see that SFARL-MSE leads to a

higher average PSNR value, while SFARL-SSIM performs better

in terms of SSIM metric. Moreover, SFARL-SSIM can better

remove rain streaks than SFARL-MSE, e.g., sky region in Fig.

9, indicating that negative SSIM loss is effective in attaining result

with higher visual quality.
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Rainy images DDNET [16] SFARL

Fig. 6: Visual quality comparison for rain streak removal. Both SFARL and DDNET are trained for Rain1400 [16]. The first row is from Rain1400 [16], while
the second row is from Rain100L [32] for evaluating generalization ability.

Rainy images GMM [24] DDNET [16] SFARL

Fig. 7: Results on real rainy images. The rain in second image is very heavy and we first dehaze [64] it to make rain streaks more visible.

Rainy image SFARL-MSE SFARL-SSIM

Fig. 9: Visual quality comparison of SFARL trained by MSE loss and negative SSIM loss.

TABLE 5: Average PSNR and SSIM on testing dataset [16] of SFARL models
for rain streak removal trained by MSE loss and SSIM loss

Training Loss SFARL-MSE SFARL-SSIM

PSNR 31.48 31.37
SSIM 0.9153 0.9188

5.4.3 Generalization evaluation

We use the trained model of SFARL for Rain1400 [16] in Section

5.3 to directly process rainy images in another dataset Rain100L

[32] for evaluating the generalization ability, and compare it

with the deep deraining method DDNET [16]. The rain streaks

in Rain1400 and Rain100L are quite different, where those in

Rain1400 are dense but gentle, and those in Rain100L are sparse

but bright. And Fig. 6 shows two rainy images for an intuitive

illustration. From Table 4, our SFARL can be well generalized to

Rain100L. As shown in Fig. 6, remaining bright rain streaks on

Rain100L can still be observed from the results by SFARL and

DDNET, indicating that the learning-based methods are limited in
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handling the cases that are very different from training samples.

Even though, our SFARL exhibits satisfying generalization ability,

and there are less remaining rain streaks in the deraining results.

5.4.4 Transferring filters across different tasks
We discuss the transferring ability of SFARL by applying the

learned fidelity and regularization filters across different restora-

tion tasks. In particular, the filters learned for deconvoluton and

denoising tasks are applied to rain streak removal on the Rain12

dataset. For both denoising and deraining, there are 5 stages for the

learned SFARL models, and thus the filters can be transferred in a

stage-to-stage manner. As for deconvolution, the learned SFARL

model has 10 stages. Considering that the first 5 stages are more

correlated with deblurring, we apply the filters in the last 5 stages

to rain streak removal. In the following, we respectively discuss

the transferring ability of fidelity and regularization filters.

First, we apply the regularization filters learned for deconvolu-

tion and denoising to the SFARL model for deraining, denoted by

SFARLBlurReg and SFARLNoiseReg, respectively. From Table 6, both

SFARLBlurReg and SFARLNoiseReg are notably inferior to SFARL

specified for deraning. As shown in Fig. 10, most rain streaks

can still be removed by SFARLBlurReg and SFARLNoiseReg, but

some fine-scale details may be blurry or smoothed out. From

the generative learning perspective, the regularization filters are

used to model clean images, and can be transferred freely across

tasks. Nonetheless, due to the effect of discriminative learning,

the regularization filters of SFARL are also tailored to the specific

degradation type. To sum up, regularization filters exhibit moder-

ate generalization ability across different tasks, especially the two

degradation types (e.g., deraining and denoising) are more similar.

Then, we transfer fidelity filters from deconvolution and de-

noising to deraining, denoted as SFARLBlurFid and SFARLNoiseFid,

respectively. As shown in Table 6 and Fig. 10, SFARLBlurFid and

SFARLNoiseFid fail in removing rain streaks quantitatively and

qualitatively. Due to the correlation between fidelity filters and

kernel estimation error, the result by SFARLBlurFid suffers from

ringing effects. The fidelity filters in SFARLNoiseFid are learned to

model noises, and perform poor in removing rain streaks from

rainy image. Thus, fidelity filters are highly task-dependent, and

cannot be transferred across tasks.

TABLE 6: Quantitative results on rainy Rain12 dataset [24] by transferring
filters from SFARL models for deconvolution and denoising.

Method SFARL SFARLBlurReg SFARLNoiseReg SFARLBlurFid SFARLNoiseFid

PSNR 35.97 29.66 32.02 27.03 27.79
SSIM 0.9581 0.8344 0.9074 0.6769 0.7508

6 CONCLUSION

In this paper, we propose an algorithm to effectively handle

image restoration with partially known or inaccurate degrada-

tion. We present a flexible model to parameterize the fidelity

term for characterizing spatial dependency and complex residual

distribution of the residual image. The simultaneous fidelity and

regularization learning model is developed by incorporating with

the parameterized regularization term. With a set of degraded

and ground-truth image pairs, task-specific and stage-wise model

parameters of SFARL can then be learned in a task driven manner.

Experimental results on two image restoration tasks, i.e., image

deconvolution and rain streak removal, show that the SFARL

model performs favorably against the state-of-the-art methods in

terms of quantitative metrics and visual quality. Experiments on

Gaussian denoising show that the SFARL method is effective

in improving visual perception metrics and visual quality of the

denoising results. Our future work includes extending the SFARL

model to other restoration tasks, and developing training methods

within the unsupervised learning framework.
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